摘要 - 目的:基于卷积神经网络(CNN)的深度学习已使用头皮脑电图(EEG)在脑部计算机界面(BCIS)方面取得了成功。然而,对所谓的“黑匣子”方法的解释及其在立体情节摄影(SEEG)基于BCIS(SEEG)的BCIS中的应用仍然在很大程度上未知。因此,在本文中,对SEEG信号深度学习方法的解码性能进行了评估。方法:招募了三十例癫痫患者,并设计了包括五种手和前臂运动类型的范式。六种方法,包括过滤库公共空间模式(FBCSP)和五种深度学习方法(EEGNET,浅层和深CNN,Resnet,Resnet和一个名为STSCNN的深CNN变体),用于对SEEG数据进行分类。进行了各种实验,以研究Resnet和STSCNN的窗口,模型结构以及解码过程的影响。结果:EEGNET,FBCSP,浅CNN,DEEP CNN,STSCNN和RESNET的平均分类精度分别为35±6.1%,38±4.9%,60±3.9%,60±3.3%,61±3.2%和63±3.1%。对所提出方法的进一步分析表明,在光谱域中不同类别之间的可分离性明显。结论:重新连接和STSCNN分别达到了第一高的解码精度。STSCNN证明了额外的空间卷积层是有益的,并且可以从空间和光谱的角度部分解释解码过程。意义:这项研究是第一个研究Seeg信号深度学习的表现的研究。此外,本文证明了所谓的“黑盒”方法可以部分解释。
摘要 - 深度卷积神经网络(DCNN)已被广泛研究以在生物医学图像处理领域进行不同类型的检测和分类。其中许多产生的结果与放射科医生和神经病学家相比,与之相当甚至更好。但是,从此类DCNN中获得良好结果的挑战是大型数据集的要求。在本研究中,本研究介绍了一种独特的基于单模型的方法,用于对小数据集进行分类。使用了一个称为regnety-3.2g的修改后的DCNN,与正则化掉落和下降块集成在一起,以防止过度拟合。此外,一种改进的增强技术称为randaugment来减轻小数据集的问题。最后,MWNL(多加权的新损失)方法和端到端CLS(累积学习策略)用于解决样本规模不平等的问题,分类中的复杂性以及降低样本对培训的影响。索引术语 - 脑部肿瘤,深度学习,机器学习,数据增强,卷积神经网络,MRI