FPGA 加速卷积神经网络已经被人们广泛研究 , 大部分设计中最终性能都受限于片上 DSP 数量 . 因 此 , 为了进一步加速 FPGA, 人们开始将目光移向了快速算法 . 快速算法能够有效降低卷积操作的乘 法次数 , 提高加速比 , 相比于非快速算法 , 快速算法需要一些额外的操作 , 这些操作大部分都是常数乘 法 , 在硬件实现过程中 , 这些常数乘法会被转换为多个位运算相加的操作 , 位运算可以不需要消耗片上 的 DSP 资源 , 仅使用 LUT 阵列就可以实现位运算 . 从近两年的研究现状来看 , 基于快速算法的工作 在逻辑资源使用方面确实要高于非快速算法的工作 . 此外 , 快速算法是以一个输入块进行操作 , 因此对 于片上缓存的容量要求更高 . 并且快速算法加快了整体的运算过程 , 因此对于片上与片外数据带宽需 求也更大 . 综上所述 , 快速算法的操作流程异于传统的卷积算法 , 因此基于快速算法的新的 FPGA 架 构也被提出 . 第 4 节将会简述国内外关于 4 种卷积算法的相关工作 .
同时,它将卷积神经网络与传统方法相结合,以基于短时傅立叶变换和连续小波变形的特征提取方法提出特征提取方法。卷积神经网络分类算法使用特征提取算法来提取时间频率特征来制作时间频率图,并使用卷积网络来快速学习分类的功能。测试结果表明,该算法在运动图像脑电图公共数据集中的精度为96%,而自制数据集的精度率约为92%,这证明了算法在运动成像EEG分类中的可行性。
通讯作者:星期日。导航日常生活成为一项艰巨的任务,挑战与寻找放错位置的个人物品并意识到其环境中的对象以避免碰撞。这需要需要自动解决方案来促进对象识别。虽然传统的方法,例如导犬,白色的甘蔗和盲文提供了有价值的解决方案,但最近的技术解决方案,包括基于智能手机的识别系统和便携式相机,但遇到了诸如与文化特异性,设备特异性和缺乏系统自治有关的限制。这项研究通过引入卷积神经网络(CNN)对象识别系统的限制解决了解决方案,该解决方案旨在集成到一个移动机器人中,该机器人旨在作为视觉障碍者的机器人助手。机器人助手能够在狭窄的环境中四处走动。它将覆盆子PI与一个编程的摄像头结合在一起,以识别三个对象:手机,鼠标和椅子。一个卷积神经网络模型进行了训练以供对象识别,其中30%用于测试。使用Google Colab中的Yolov3模型进行了培训。对识别系统的定性评估的精度为79%,召回96%,机器人助手的精度为80%。它还包括一个图形用户界面,用户可以轻松地控制机器人助手的运动和速度。发达的机器人助手显着增强了自主权和对象识别,有望在视力受损的个体的日常导航中获得可观的好处。
脑电图 (EEG) 使用放置在头皮上的传感器实时测量大脑电活动。必须识别并消除由于眼球运动和眨眼、肌肉/心脏活动和一般电干扰而产生的伪影,以便正确解释 EEG 的有用脑信号 (UBS)。独立分量分析 (ICA) 可有效地将信号分成独立分量 (IC),这些分量在 2D 头皮地形图 (图像)(也称为地形图)上的重新投影允许识别/分离伪影和 UBS。到目前为止,IC 地形图分析(EEG 的黄金标准)一直由人类专家以视觉方式进行,因此无法用于自动、快速响应的 EEG。我们提出了一个基于 2 D 卷积神经网络 (CNN) 的 IC 拓扑图脑电图伪影识别的完全自动化和有效框架,能够将拓扑图分为 4 类:3 种伪影类型和 UBS。描述了框架设置,并展示、讨论了结果,并将其与其他竞争策略的结果进行了比较。在公共脑电图数据集上进行的实验表明,总体准确率超过 98%,在标准 PC 上用 1.4 秒对 32 个拓扑图进行分类,即驱动一个由 32 个传感器组成的脑电图系统。虽然不是实时的,但提出的框架足够高效,可用于基于快速响应脑电图的脑机接口 (BCI),并且比其他基于 IC 的自动方法更快。
摘要从互联网技术和通信技术的快速发展中受益,行业互联网迅速上升。随着互联网技术的快速发展,网络安全变得越来越突出。此外,入侵攻击会导致系统故障或降低系统性能,因此入侵检测是确保系统可靠性的重要方面。针对运营过程中工业互联网面临的巨大安全风险,本研究提出了一种基于卷积神经网络的工业互联网故障检测模型,该模型最初通过卷积神经网络筛选了卷积神经网络的入侵攻击,并引入了粒子群群群优化算法,以识别筛查的入侵攻击。The experimental results demonstrated that when the training set size was 1600, the accuracy rates of random forest, K-mean clustering algorithm, convolutional neural network and improved convolutional neural network algorithms were 93.2%, 94.9%, 96.3%, and 98.6%, respectively, and the false alarm rates were 6.9%, 5.0%, 3.8%, and 2.1%, respectively.随机森林,K均值聚类,卷积神经网络和改进的卷积神经网络算法的均方根误差值分别为0.32、0.22、0.18和0.11。当训练集大小为800时,相应的F1值为0.81、0.84、0.87和0.98。该研究的结果表明,改进的算法模型优于其他策略,为在工业互联网中的应用提供了坚实的基础。
– 特征不变性很难:施加扰动,针对每个变化进行学习 – ImageNet 最佳表现者的进展 – AlexNet:第一个表现最好的 CNN,60M 参数(来自 LeNet-5 的 60k),ReLU – VGGNet:更简单但更深(8 19 层),140M 参数,集成 – GoogleNet:新原始 = inception 模块,5M 参数,无 FC,效率 – ResNet:152 层,消失梯度 拟合残差以实现学习 5. 无数应用程序:通用架构,巨大功能
图2。在1980 - 2000年期间通过每日降雨的气候学的输入(左)和目标(右)域的示意图。左图上的黑线显示目标域,而输入域则是整个地图。目标域上:红点是图6和10的三个说明点。从北到南,有巴黎,瑞士阿尔卑斯山和罗马的高点(2247米)。三个蓝色框是第3.2.1节中用于SAL评估的三个区域:北部地区,以比利时,塞文尼斯地区(法国东南)和迪纳尔·阿尔卑斯山(Dinaric Alps)为中心。
对数字通信网络的日益依赖使信息安全成为全球个人,组织和政府的关键问题(Chen等,2011)。但是,这种提高的连通性也导致了各种网络威胁,中间人(MITM)的攻击是网络攻击的破坏形式(Disha&Waheed,2022; Zahara et al。,2020)。在MITM攻击中,攻击者拦截并改变了两方之间的通信,通常是在不知情的情况下。检测MITM攻击是由于其隐形性和攻击者采用的复杂方法而复杂的。传统的MITM攻击检测方法通常难以准确识别复杂的攻击,并将其与合法的网络行为区分开。现有的检测MITM攻击的技术主要依赖于分析网络流量模式和检测异常(Ahmad等,2020)。但是,这些方法通常在准确识别微妙而复杂的攻击模式中面临局限性,从而导致假阳性或假否定性增加。