傅里叶积分定理 – 傅里叶变换对-正弦和余弦变换 – 性质 – 基本函数变换 – 卷积定理 – 帕塞瓦尔恒等式。第三单元偏微分方程 9+3 形成 – 一阶方程的解 – 标准类型和可简化为标准类型的方程 – 奇异解 – 拉格朗日线性方程 – 通过给定曲线的积分曲面 – 具有常数系数的高阶线性方程的解。第四单元偏微分方程的应用 9+3 变量分离法 – 一维波动方程和一维热方程的解 – 二维热方程的稳态解 – 笛卡尔坐标中的傅里叶级数解。第六单元 Z – 变换和差分方程 9+3 Z 变换 – 基本性质 – 逆 Z 变换 – 卷积定理 – 初值和终值定理 – 差分方程的形成 – 使用 Z 变换求解差分方程。L:45,T:15,总计:60 节课 教科书 1.Grewal,B.S.“高等工程数学”,Khanna Publications(2007) 参考文献 1.Glyn James,“高级现代工程数学”,Pearson Education(2007) 2.Ramana,B.V. “高等工程数学”Tata McGraw Hill(2007)。3.Bali, N.P.和 Manish Goyal,“工程教科书第 7 版 (2007) Lakshmi Publications (P) Limited,新德里。
方程。5。了解相关,回归,力矩,偏度以及峰度和曲线拟合的概念。模块1:拉普拉斯变换:(8小时)拉普拉斯变换的定义,存在定理,衍生物和积分的拉普拉斯变换,初始和最终值定理,单位步长函数,diracdelta函数,diracdelta函数,laplace的周期性函数,周期性的拉普拉斯转换,逆向拉普拉斯变换,卷积变换,卷积定理,应用程序lineal linear lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal areviations lineal lineal areve lineal lineal areviations。模块2:傅立叶变换:(8小时)傅立叶积分,正弦和余弦积分,傅立叶积分,傅立叶变换,逆傅里叶式扭转,卷积定理,傅立叶定理,傅立叶正弦和余弦变换,傅立叶变换的应用到简单的一维热传输方程。模块3:代数和超验方程和插值的解决方案:(8小时)数量及其准确性,代数和先验方程的解决方案:分配方法,迭代方法,Newton-Raphson方法和Regula-Falsi方法。这些方法的收敛速率(没有证据),插值:有限差异,操作员之间的关系,使用牛顿的前向和后差公式进行插值,与不平等间隔的插值:牛顿的分裂差异和Lagrange的公式。
引言 ;一些基本函数的逆变换 ;求逆变换的一般方法 ;求逆拉普拉斯变换的偏分式和卷积定理 ;用于求常系数线性微分方程和联立线性微分方程的解的应用 第 3 单元:傅里叶变换 [09 小时] 定义 - 积分变换 ;傅里叶积分定理(无证明) ;傅里叶正弦和余弦积分 ;傅里叶积分的复数形式 ;傅里叶正弦和余弦变换 ;傅里叶变换的性质 ;傅里叶变换的帕塞瓦尔恒等式。 第 4 单元:偏微分方程及其应用 [09 小时] 通过消去任意常数和函数形成偏微分方程;可通过直接积分解的方程;一阶线性方程(拉格朗日线性方程);变量分离法 - 用于求一维解的应用
单元I:拉普拉斯变换:某些功能的定义和拉普拉斯变换 - 转移定理;衍生物和积分的拉普拉斯转换 - 单位步骤功能 - 迪拉克的dilta函数,周期性函数。反向拉普拉斯转换-Convolution定理(无证明)。应用程序:使用拉普拉斯变换求解普通微分方程(初始值问题)。单元-II:傅立叶级数和傅立叶变换:傅立叶序列:简介,周期功能,一系列周期函数,差异和奇数函数,偶数和奇数功能,间隔的变化,半范围傅立叶正弦和余弦系列。傅立叶变换:傅立叶积分定理(无证明) - 曲线和余弦的正弦和余弦变换 - 跨性别者(文本book-i中的第22.5条) - 逆变换 - 卷积定理(没有证明)有限的傅立叶变换。
数字理论变换(NTT)是一种强大的数学工具,在开发量子加密后(PQC)和同形加密(HE)方面变得越来越重要。使用具有快速傅立叶变换式算法实现时,使用具有准线性复杂性O(N log N)而不是O(n log N)的卷积定理有效计算多项式乘法的能力使其成为现代密码学中的关键组成部分。FFT风格的NTT算法或Fast-NTT在基于晶格的密码学中特别有用。在此简短说明中,我们简要介绍了通过传统的教学书算法,传统NTT,其倒数(INTT)和类似FFT的版本的NTT/Intt的传统学科算法,线性,环状和否定卷积的基本概念。然后,我们通过不同的概念和算法提供一致的玩具示例,以了解NTT概念的基础。
在本文中,我们提出了一种新型的Hadamard Trans-form-基于基于量子量子量子计算的神经网络层。它在Hadamard变换域中实现了常规卷积层。这个想法基于HT卷积定理,该定理指出,两个向量之间的二元卷积等于其HT表示的元素乘法。计算HT仅仅是在每个量子位上应用于每个量子的应用,因此我们提出的层的HT计算可以在量子计算机上实现。与常规Conv2D层相比,所提出的HT- perceptron层在计算上更有效。与CNN相比具有相同数量的可训练参数和99.26%的测试准确性,我们的HT网络达到99.31%的测试效果,而MNIST数据集中降低了57.1%的MAC;在我们的ImagEnet-1K实验中,我们的基于HT的RESNET-50超过了基线RESNET-50的准确性,使用少11.5%的参数,而MAC少12.6%。
详细课程大纲 第一单元:变换微积分拉普拉斯变换:拉普拉斯变换、性质、逆、卷积、用拉普拉斯变换求某些特殊积分、初值问题的解。傅里叶级数:周期函数、函数的傅里叶级数表示、半程级数、正弦和余弦级数、傅里叶积分公式、帕塞瓦尔恒等式。傅里叶变换:傅里叶变换、傅里叶正弦和余弦变换。线性、缩放、频移和时移性质。傅里叶变换的自互易性、卷积定理。应用于边界值问题。第二单元:数值方法近似和舍入误差、截断误差和泰勒级数。插值 - 牛顿前向、后向、拉格朗日除差。数值积分 - 梯形、辛普森 1/3。通过二分法、迭代法、牛顿-拉夫森法、雷古拉-法尔西法确定多项式和超越方程的根。通过高斯消元法和高斯-西德尔迭代法求解线性联立线性代数方程。曲线拟合-线性和非线性回归分析。通过欧拉法、修正欧拉法、龙格-库塔法和预测-校正法求解初值问题。
方程。5。了解相关,回归,力矩,偏度以及峰度和曲线拟合的概念。模块1:拉普拉斯变换:(8小时)拉普拉斯变换的定义,存在定理,衍生物和积分的拉普拉斯变换,初始和最终值定理,单位步长函数,diracdelta函数,dirac-delta函数,laplace的周期性函数,周期性拉普拉斯转换,互惠变换,卷积变换,互惠定理,solude for solve lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal areviations lineal lineal areviations lineal lineal areviations。模块2:傅立叶变换:(8小时)傅立叶积分,正弦和余弦积分,傅立叶积分,傅立叶变换,逆傅里叶式扭转,卷积定理,傅立叶定理,傅立叶正弦和余弦变换,傅立叶变换的应用到简单的一维热传输方程。模块3:代数和超验方程和插值的解决方案:(8小时)数量及其准确性,代数和先验方程的解决方案:分配方法,迭代方法,Newton-Raphson方法和Regula-Falsi方法。这些方法的收敛速率(没有证据),插值:有限差异,操作员之间的关系,使用牛顿的前向和后差公式进行插值,与不平等间隔的插值:牛顿的分裂差异和Lagrange的公式。
方程。5。了解相关,回归,力矩,偏度以及峰度和曲线拟合的概念。模块1:拉普拉斯变换:(8小时)拉普拉斯变换的定义,存在定理,衍生物和积分的拉普拉斯变换,初始和最终值定理,单位步长函数,diracdelta函数,dirac-delta函数,laplace的周期性函数,周期性拉普拉斯转换,互惠变换,卷积变换,互惠定理,solude for solve lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal lineal areviations lineal lineal areviations lineal lineal areviations。模块2:傅立叶变换:(8小时)傅立叶积分,正弦和余弦积分,傅立叶积分,傅立叶变换,逆傅里叶式扭转,卷积定理,傅立叶定理,傅立叶正弦和余弦变换,傅立叶变换的应用到简单的一维热传输方程。模块3:代数和超验方程和插值的解决方案:(8小时)数量及其准确性,代数和先验方程的解决方案:分配方法,迭代方法,Newton-Raphson方法和Regula-Falsi方法。这些方法的收敛速率(没有证据),插值:有限差异,操作员之间的关系,使用牛顿的前向和后差公式进行插值,与不平等间隔的插值:牛顿的分裂差异和Lagrange的公式。模块4:数值差异和集成和解决方案:(8小时)
课程内容: 单元 1:拉普拉斯变换 [09 小时] 定义 – 存在条件;基本函数的变换;拉普拉斯变换的性质 – 线性性质、一阶移位性质、二阶移位性质、函数乘以 tn 的变换、尺度变化性质、函数除以 t 的变换、函数积分的变换、导数的变换;利用拉普拉斯变换求积分;一些特殊函数的变换 – 周期函数、海维赛德单位阶跃函数、狄拉克函数。 单元 2:逆拉普拉斯变换 [09 小时] 简介;一些基本函数的逆变换;求逆变换的一般方法;求逆拉普拉斯变换的部分分式法和卷积定理;用于求常系数线性微分方程和联立线性微分方程的解的应用 单元 3:傅里叶变换 [09 小时] 定义 – 积分变换;傅里叶积分定理(无证明);傅里叶正弦和余弦积分;傅里叶积分的复数形式;傅里叶正弦和余弦变换;傅里叶变换的性质;傅里叶变换的帕塞瓦尔恒等式。 第四单元:偏微分方程及其应用 [09 小时] 通过消除任意常数和函数形成偏微分方程;可通过直接积分解的方程;一阶线性方程(拉格朗日线性方程);变量分离法 - 用于寻找一维热流方程的解