摘要:真菌 - 细菌组合在各种压力条件下提高和改善植物健康方面具有重要作用。真菌和细菌分泌的代谢产物在此过程中起着重要作用。我们的研究强调了单独的真菌Serendipita Indica分泌的继发代谢产物和Zhihengliuella sp。istpl4在正常生长条件下和砷(AS)应力条件下。在这里,我们评估了单独的S. Indica和Z. sp。的砷差异能力。ISTPL4在体外条件下。 S. indica和Z. sp的生长。 istpl4以不同的砷浓度测量,砷对使用共聚焦杂志和扫描电子显微镜确定了砷对孢子大小和形态的影响。 代谢组学研究表明,单独在正常生长条件下单独进行识别链球菌,在应力下释放五核酸,甘油三酸甘油三酸酯 - 已故,L-丙啉和环链(L-丙酰L-谷氨酸)。 同样,D-核糖,2-脱氧 - 双基(硫代) - dithiocetal是通过S. indica和Z. sp的组合分泌的。 ISTPL4。 共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。 ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4在体外条件下。S. indica和Z. sp的生长。istpl4以不同的砷浓度测量,砷对使用共聚焦杂志和扫描电子显微镜确定了砷对孢子大小和形态的影响。代谢组学研究表明,单独在正常生长条件下单独进行识别链球菌,在应力下释放五核酸,甘油三酸甘油三酸酯 - 已故,L-丙啉和环链(L-丙酰L-谷氨酸)。同样,D-核糖,2-脱氧 - 双基(硫代) - dithiocetal是通过S. indica和Z. sp的组合分泌的。ISTPL4。 共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。 ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4。共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4在2.4 mm浓度为As。砷高于此浓度,导致孢子产生和菌丝碎裂。扫描电子显微镜(SEM)结果表明,在存在Z. sp。除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4(18±0.75 µm)与单独的s。在正常生长条件下(14±0.24 µm)相比。我们的研究得出的结论是,微生物财团的建议组合可用于通过打击生物胁迫和非生物压力来增加可持续农业。这是因为微生物组合释放的代谢产物显示抗真菌和抗菌特性。因此,选择财团和组合伙伴的选择很重要,可以帮助制定应对压力的策略。
含摘要黄素单加氧酶(FMO)是一种保守的异种生物酶家族,包括多种寿命干预措施,包括线虫和小鼠模型。以前的工作支持秀丽隐杆线虫FMO-2通过重新布线内源代谢来促进寿命,抗压力和健康状态。但是,有五个秀丽隐杆线虫FMO和五个哺乳动物FMO,尚不清楚促进长寿和健康益处是否是该基因家族的保守作用。在这里,我们报告说,秀丽隐杆线虫FMO-4的表达促进了饮食限制和MTOR抑制下游的寿命延伸和偏花应力抗性。我们发现,仅皮下注射中FMO-4的过表达就足以容纳这些好处,并且该表达显着修饰了转录组。通过分析基因表达的变化,我们发现与钙信号相关的基因被显着改变了FMO-4的下游。强调了钙稳态在该途径中的重要性,FMO-4过表达的动物对Thapsigargin敏感,Thapsigargin是一种ER胁迫,可抑制从细胞质到ER腔的钙通量。这种钙/ FMO-4的相互作用通过数据巩固,表明用小分子或遗传学调节细胞内钙可以改变FMO-4的表达和/或与FMO-4相互作用,以影响寿命和抗压力。进一步的分析支持一条途径,其中FMO-4调节激活转录因子-6(ATF-6)下游的钙稳态(ATF-6),其敲低引起并需要FMO-4表达。一起,我们的数据将FMO-4识别为延长的基因,其作用与已知的寿命途径和钙稳态相互作用。
Stefania Vitale、Hugo Puozzo、Shamil Saiev、Leïla Bonnaud、Antonio Gaetano Ricciardulli 等人。调整石墨烯-聚苯并恶嗪纳米复合材料的压阻行为:面向压力传感应用的高性能材料。材料化学,2023 年,35 (17),第 6909-6919 页。�10.1021/acs.chemmater.3c01191�。�hal-04205527�
全球对化石燃料以外替代能源资源的需求由于其消耗的耗竭和环境影响而被放大。最近的评估发现,在能源转化步骤中,全球72%的全球能源消耗损失。1,重大损失被指定为废热,需要回收以提高全球能源可持续性。因此,热电(TE)材料通过将废热转换为电力并作为无噪声和无噪声的固态冷却器来使其成为一种可持续和可靠的能源引起了极大的兴趣。2热电效率取决于功绩的无量纲热电图,ZT = A2σT /κ,其中a,σ,T和κ分别是Seebeck系数,分别是电导率,绝对温度和总导电性。3材料的热电效率可以通过
I. i ntroduction慢性应激是由持续压力源引起的生理和心理压力状态的长期状态。与急性压力不同,急性应激在短时间内通过提高机敏性和性能可能是有益的,慢性压力会导致大脑的连续压力,从而导致长期功能障碍。这种长时间暴露于压力激素,尤其是皮质醇,有助于大脑的结构和功能变化,从而影响认知,情绪调节和整体心理健康。由于调节认知和情感功能的神经元网络和神经递质网络,人脑特别容易受到慢性压力的影响。研究表明,慢性应激会导致神经变性,突触功能障碍和神经发生受损。海马是一个对学习和记忆至关重要的大脑区域,非常容易受到压力引起的损害。慢性应激已显示可减少海马体积,损害记忆巩固并增加对神经退行性疾病(例如阿尔茨海默氏病)的敏感性。同样,在慢性应激条件下,杏仁核在情绪调节和威胁检测中起着至关重要的作用。增加的杏仁核活性与焦虑,恐惧反应和情绪不稳定有关,这导致焦虑症和抑郁症的发作。此外,慢性压力对前额叶皮层产生负面影响,前额叶皮层是负责执行功能的区域,例如决策,冲动控制和认知灵活性。研究表明,长时间的压力暴露会导致前额叶皮层萎缩,从而导致认知功能受损和情绪调节不良。
本世纪正在呈现全球气候变化,并在环境条件下发生了重大变化,这可能会影响几种生物体的生长,发育和生存。反过来,这种影响会影响地球上生物的食物,饲料和饲料的可用性。反复发生的环境压力,例如热,干旱,冷,昏昏欲睡等。可能会造成巨大的收益率损失,对农作物的挑战以及对可持续粮食安全的担忧。在压力条件下基因表达的调节是植物为应对环境应力而采用的分子策略之一。microRNA(miRNA)在通过翻译抑制或由于mRNA的裂解而在控制基因表达方面起重要作用。此外,miRNA正在成为调节发育过程(包括生产力/产量以及对植物压力的反应)的较新候选者。通常,miRNA的靶标是转录因子和与胁迫反应相关的基因,从而影响植物的适应性潜力。miRNA(miR160-arf,miR159-myb和miR169-nFya)的组合参与了调节植物干旱下基因表达的调节。这些干旱响应性的miRNA被证明具有影响生理,生化和分子反应的影响,并用作作物植物基因操纵的候选物,以增强胁迫弹性。本综述提供了对miRNA的见解,这是一种应力,在植物(尤其是大米中)对环境压力的弹性中起着重要作用。据报道,miRNA可以控制关键的生物学过程,例如呼吸,光合作用,信号通路,衰老等,尤其是在压力条件下。已经讨论了利用基于miRNA的策略进行改进的一些局限性以及未来的观点。这些可能有助于理解miRNA的功能,这是基因调节网络的重要组成部分之一,这将促进农作物的遗传改善,从而获得多种应力并产生潜力。
萨斯喀彻温省预防研究所为所有居住在条约土地上的人提供服务2、4、5、6、8和10,nêhiyawak,Nêhithawak,Nêhinawak,Nêhinawak,nêhinawak,anthinawak,anishinabek,anishinabek,Nakawe,Nakawe,Dakota,Dakota,Lakota,Nakota,Nakota,Nakota,dene和homeland and of yomeand我们认识到,这些土地目前是在乌龟岛各地的土著人民中居住的,包括许多其他原住民和因纽特人,并承认条约的重要性,殖民化的持久影响以及持续的不平等。我们致力于前进,沿着共同的和解与伙伴关系。我们都是条约人,并感谢在这片土地上生活,工作和娱乐。
1。Ellwood F.疲劳作为危险因素。br dent j 2024; 237:821–822。2。Marya A,Venugopal A,Ghoussoub M S.我们听到吗? 在正畸治疗期间,新的SARS-COV-2预防措施和长期使用治疗方式的负面影响。 pesquisa brasileira em odontopediaria eclínicaintegrada 2022; doi:10.1590/pboci.2022.023。 3。 Marya A,Venugopal A,Karobari M I,Heboyan A. 计算机视觉综合征:大流行会导致牙医的眼睛问题吗? pesquisa brasileira em odontopediaria eclínicaintegrada 2022; doi:10.1590/ pboci.2022.009。 4。 Karobari M I,Marya A,Ali S等。 一项多元文化人群研究,旨在评估SARS-COV-2大流行对整个牙科行业的工作满意度的影响。 pesquisa brasileira em odontopediaria eclínicaintegrada 2021; 10.1590/pboci.2021.171。Marya A,Venugopal A,Ghoussoub M S.我们听到吗?在正畸治疗期间,新的SARS-COV-2预防措施和长期使用治疗方式的负面影响。pesquisa brasileira em odontopediaria eclínicaintegrada 2022; doi:10.1590/pboci.2022.023。3。Marya A,Venugopal A,Karobari M I,Heboyan A. 计算机视觉综合征:大流行会导致牙医的眼睛问题吗? pesquisa brasileira em odontopediaria eclínicaintegrada 2022; doi:10.1590/ pboci.2022.009。 4。 Karobari M I,Marya A,Ali S等。 一项多元文化人群研究,旨在评估SARS-COV-2大流行对整个牙科行业的工作满意度的影响。 pesquisa brasileira em odontopediaria eclínicaintegrada 2021; 10.1590/pboci.2021.171。Marya A,Venugopal A,Karobari M I,Heboyan A.计算机视觉综合征:大流行会导致牙医的眼睛问题吗?pesquisa brasileira em odontopediaria eclínicaintegrada 2022; doi:10.1590/ pboci.2022.009。4。Karobari M I,Marya A,Ali S等。 一项多元文化人群研究,旨在评估SARS-COV-2大流行对整个牙科行业的工作满意度的影响。 pesquisa brasileira em odontopediaria eclínicaintegrada 2021; 10.1590/pboci.2021.171。Karobari M I,Marya A,Ali S等。一项多元文化人群研究,旨在评估SARS-COV-2大流行对整个牙科行业的工作满意度的影响。pesquisa brasileira em odontopediaria eclínicaintegrada 2021; 10.1590/pboci.2021.171。
1 美国华盛顿大学,西雅图,华盛顿州西雅图市98195,美国2阿拉斯加渔业科学中心,国家海洋和大气管理局,西雅图,西雅图,西雅图,98115,美国西北渔业科学中心,国家海洋和大气管理局,美国西部地区,西特,西雅图市,澳大利亚4112,美国,美国国家海洋和大气部,4。澳大利亚塔斯马尼亚州霍巴特,塔斯马尼亚州霍巴特,TAS 7001 6北太平洋研究委员会,AK 99501,美国7环境防御基金,西雅图,西雅图,华盛顿州98112,美国8合作社气候研究所,海洋和生态系统研究,海洋和生态系统研究,华盛顿大学,西雅图大学,西雅图,西雅图,西雅图,西澳州98105,美国98105,美国国家环境实验室。美国加利福尼亚大学圣克鲁斯大学海洋科学渔业合作计划,美国115060,美国11海洋伙伴,Inc。,与西北渔业科学中心,国家海洋和大气管理局,西雅图市西雅图市,华盛顿州西雅图市98112,美国西雅图市,美国西雅图市,美国西特,12 12 12日,美国西部,西特,西雅图,华盛顿州西雅图市98101,美国13号,美国13.美国13.13访问。 西北渔业科学中心,国家海洋与大气管理局,西雅图,华盛顿州98112,美国14美国海洋与渔业研究所美国华盛顿大学,西雅图,华盛顿州西雅图市98195,美国2阿拉斯加渔业科学中心,国家海洋和大气管理局,西雅图,西雅图,西雅图,98115,美国西北渔业科学中心,国家海洋和大气管理局,美国西部地区,西特,西雅图市,澳大利亚4112,美国,美国国家海洋和大气部,4。澳大利亚塔斯马尼亚州霍巴特,塔斯马尼亚州霍巴特,TAS 7001 6北太平洋研究委员会,AK 99501,美国7环境防御基金,西雅图,西雅图,华盛顿州98112,美国8合作社气候研究所,海洋和生态系统研究,海洋和生态系统研究,华盛顿大学,西雅图大学,西雅图,西雅图,西雅图,西澳州98105,美国98105,美国国家环境实验室。美国加利福尼亚大学圣克鲁斯大学海洋科学渔业合作计划,美国115060,美国11海洋伙伴,Inc。,与西北渔业科学中心,国家海洋和大气管理局,西雅图市西雅图市,华盛顿州西雅图市98112,美国西雅图市,美国西雅图市,美国西特,12 12 12日,美国西部,西特,西雅图,华盛顿州西雅图市98101,美国13号,美国13.美国13.13访问。 西北渔业科学中心,国家海洋与大气管理局,西雅图,华盛顿州98112,美国14美国海洋与渔业研究所美国华盛顿大学,西雅图,华盛顿州西雅图市98195,美国2阿拉斯加渔业科学中心,国家海洋和大气管理局,西雅图,西雅图,西雅图,98115,美国西北渔业科学中心,国家海洋和大气管理局,美国西部地区,西特,西雅图市,澳大利亚4112,美国,美国国家海洋和大气部,4。澳大利亚塔斯马尼亚州霍巴特,塔斯马尼亚州霍巴特,TAS 7001 6北太平洋研究委员会,AK 99501,美国7环境防御基金,西雅图,西雅图,华盛顿州98112,美国8合作社气候研究所,海洋和生态系统研究,海洋和生态系统研究,华盛顿大学,西雅图大学,西雅图,西雅图,西雅图,西澳州98105,美国98105,美国国家环境实验室。美国加利福尼亚大学圣克鲁斯大学海洋科学渔业合作计划,美国115060,美国11海洋伙伴,Inc。,与西北渔业科学中心,国家海洋和大气管理局,西雅图市西雅图市,华盛顿州西雅图市98112,美国西雅图市,美国西雅图市,美国西特,12 12 12日,美国西部,西特,西雅图,华盛顿州西雅图市98101,美国13号,美国13.美国13.13访问。 西北渔业科学中心,国家海洋与大气管理局,西雅图,华盛顿州98112,美国14美国海洋与渔业研究所美国华盛顿大学,西雅图,华盛顿州西雅图市98195,美国2阿拉斯加渔业科学中心,国家海洋和大气管理局,西雅图,西雅图,西雅图,98115,美国西北渔业科学中心,国家海洋和大气管理局,美国西部地区,西特,西雅图市,澳大利亚4112,美国,美国国家海洋和大气部,4。澳大利亚塔斯马尼亚州霍巴特,塔斯马尼亚州霍巴特,TAS 7001 6北太平洋研究委员会,AK 99501,美国7环境防御基金,西雅图,西雅图,华盛顿州98112,美国8合作社气候研究所,海洋和生态系统研究,海洋和生态系统研究,华盛顿大学,西雅图大学,西雅图,西雅图,西雅图,西澳州98105,美国98105,美国国家环境实验室。美国加利福尼亚大学圣克鲁斯大学海洋科学渔业合作计划,美国115060,美国11海洋伙伴,Inc。,与西北渔业科学中心,国家海洋和大气管理局,西雅图市西雅图市,华盛顿州西雅图市98112,美国西雅图市,美国西雅图市,美国西特,12 12 12日,美国西部,西特,西雅图,华盛顿州西雅图市98101,美国13号,美国13.美国13.13访问。西北渔业科学中心,国家海洋与大气管理局,西雅图,华盛顿州98112,美国14美国海洋与渔业研究所
方法:在拉合尔旁遮普大学的道德批准(ERC144/23)之后,从垃圾填埋场和水生环境中分离出塑料降解的微生物菌株。这些分离株是在受控实验室中培养的,使用补充PE和PET作为唯一碳源的最小盐培养基。在四个星期内进行了实验,塑料样品在25°C,35°C和45°C下在5、7和9。氧气可用性受到控制,以产生有氧和厌氧条件。通过减肥测量,通过扫描电子显微镜进行表面形态分析以及通过光密度(OD600)测量来评估塑性降解效率。使用单向方差分析和t检验进行统计分析,p值<0.05被认为是显着的。