由于高能量密度设备的优势,高能密度的高能密度需求迅速生长。除了锂离子电池,Lith-ium金属电池(LMB)之外,由于理论特异性极高(3860 mAh g –1,2062 mAh cm –3),因此被认为是下一代可充电电池,并且是最低的Redox电势(–3.04 V vs.标准氢电极)[1-3]。However, LMBs has severe problems due to (1) uncontrollable lithium dendrite formation, result in penetration of the separator, causing short circuit, (2) large volumetric and morphological changes during charging process, (3) continuous reactions between lithium metal and electrolyte resulting from the crack of solid electrolyte interphase (SEI) layers on the lith- ium metal surface [4,5].这些问题导致循环寿命和安全风险恶化。已经探索了几种策略,例如改变电解质(锂盐,溶剂(碳酸盐,乙醚)和功能添加剂)以形成稳定的SEI
对于本文研究的非密封列车,内部压力变化可能非常快,因此可能会影响较高速度下的乘客舒适度。因此,大多数高速列车都具有复杂且昂贵的增压系统,有助于将车厢内的压力变化保持在可接受的水平。它们还必须满足有关密封系统故障时压力变化量的严格规定 [6] 。隧道通行的另一个关键方面是隧道端部发出的强压力振荡(微压波),这可能会扰乱隧道端部附近的环境,尤其是对于位于人口稠密地区小横截面积的隧道。这在日本是一个严重的问题,因此日本的高速列车以其非常长的车头而闻名。
抽象断层区域展示了3D可变厚度,该特征仍然不足,特别是在对流体流动的影响方面。分析分析溶液后,我们通过基准实验检查了3D热氢(Th)动力学模型,该实验结合了一个断层区,其厚度变化对应于逼真的数量级。这些发现强调了一个关注区域,其中剧烈对流驱动流体流动,导致在断层区最厚的部分的浅深度下,温度升高到150°C。此外,通过考虑3D热氢化机械(THM)模型中的各种构造制度(压缩,延伸和滑行)模型,并将其与基准测试实验进行比较,我们观察到在感兴趣的面积内作用于流体流动的流体压力引起的流体压力变化。这些构造引起的压力变化会影响区域的热分布和温度异常的强度。这项研究的结果强调了孔弹性驱动力对转移过程的影响,并强调了将断层几何形状作为关键参数的重要性,这是对破裂系统中流体流量的未来研究。此类研究在地热能,CO 2存储和矿藏中具有相关的应用。
当前涉及将堆栈压力施加到锂袋细胞的研究表明了性能和终身益处。固定装置用于模仿细胞级别,并常规规定在细胞上的常数位移。这增加了堆栈压力,但也会导致压力变化。尽管如此,施加初始堆栈压力可改善细胞电导率和细胞寿命(Mussa等,2018; Zhou等,2020;Müller等人,2019; Li等,2022,Cannarella和Arnold,2014)。在这项工作中,设计了一个固定装置,该固定装置将恒定压力施加到独立于位移的细胞。固定装置使用气动施加恒定的堆栈压力,独立于弹性和塑料肿胀。使用混合脉冲功率表征(HPPC)测试评估受恒定压力夹具和常规位移固定装置约束的细胞,以测量内部电阻和最大可交付功率。应用多个堆栈压力来研究压力在操作条件上的压力方差以及恒定压力和基于恒定位移的方法之间的性能。将所有测试与没有施加堆栈压力的对照案例进行比较。基于压力的恒定方法减少了充电和排放期间的压力变化,减少了放电阻抗并提高了放电功率,但并不能改善电荷性能。恒定压力带来的排放性能益处可能会影响包装设计以提高车辆性能。
摘要。可再生能源发电成本的下降,加上电解技术的进步,表明绿色氢气生产可能是正在进行的能源转型中的可行选择。然而,绿色氢经济不仅需要生产解决方案,还需要存储选项,而这已被证明具有挑战性。一种尚未得到充分探索的解决方案是在套管井或竖井中地下储存氢气 (H 2 )。它的集成将带来实施的多功能性和广泛的适用性,因为它不需要特定的地质背景。本文的目的是评估这种新存储技术的技术可行性。准确预测温度和压力变化对于设计、材料选择和安全原因至关重要。这项工作使用基于质量和能量守恒方程的数值模型来模拟套管井中的储氢操作。研究表明,腔壁处的传热强烈影响温度和压力变化。这种影响因钻孔的几何形状提供显着的接触面积而加剧。因此,这种技术可以缓解极端压力和温度变化,并且在给定压力约束的情况下产生比传统洞穴更高的氢密度。结果表明,半径为 0.2 m 时,在最大压力为 50 MPa 时可达到 30 kg m − 3 的氢密度。在 4 小时内注入时,系统在最高温度和压力方面的响应相对线性,但随着注入时间的缩短,系统很快变为非线性。优化初始存储条件似乎对于最大限度地降低冷却成本和最大限度地提高存储质量至关重要。
读者 本手册介绍了用于 ControlNet 网络的 AMCI SSI 数字接口的操作、安装和编程。本产品的模块编号为 NX2E4C。该装置最多可接受四个 SSI 传感器。它从 SSI 流中提取数据值,然后将其缩放为工程单位。NX2E4C 还计算数据值的变化率。数据值和变化率信息的含义取决于 NX2E4C 使用的传感器类型。SSI 压力传感器报告压力值,NX2E4C 计算每秒的压力变化。位置传感器报告位置值,NX2E4C 计算移动部件每秒的位置变化,即速度。