在两路式调节器中,如果下游压力降低,因为对天然气的需求正在增加,则试点阀插头从孔口移开,从而使入口压力填充主阀的负载压力室。加载压力的这种增加迫使主阀打开,这会增加下游天然气的流动,从而确保下游压力保持在设定点附近。如果下游压力增加,因为天然气的需求正在减少,则会发生反合。飞行员阀插头向孔口移动,将流动到装载压力室的流动限制,并迫使加载压力室内的气压高高通过固定限制。当负载压力降低时,主阀的弹簧力会闭合主插头,限制流量并确保下游压力保持在设定点附近。
3。ServiceandMaintenance ......................................................................................................................................................................................... 37 3.1.Pedal Mechanism Mounting .......................................................................................................................................................................... 37 3.2.Brakeservice ............................................................................................................................................................................................................ 38 3.2.1.Establishingtheclearance ................................................................................................................................ 39 3.3.Openingthebrakeline ............................................................................................................................................................................. 40 3.3.1.DSCbrake ................................................................................................................................................................................... 40 3.3.2.DSCibrake .................................................................................................................................................................................. 40 3.4.Brakefluid ...................................................................................................................................................................................................................... 41 3.5.Brakebleeding ....................................................................................................................................................................................................... 41 3.5.1.NoteforService ................................................................................................................................................................. 41 3.5.2.Brakefluidexpansiontank ................................................................................................................................ 42 3.5.3.Activating the Routine for Brake Fluid Renewal ........................................................................ 42 3.5.4.Evacuatingtheoldbrakefluid ..................................................................................................................... 42 3.5.5.冲洗压力室.............................................................................................................................Sequenceforbrakebleeding ........................................................................................................................ 44 3.5.7.Finalsteps ................................................................................................................................................................................... 44 3.5.8.特殊情况下的制动出血例程..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 44 3.6。Leak-testingthebrakehydraulics ........................................................................................................................................... 45 3.7.DSCandDSCiunit ......................................................................................................................................................................................... 45 3.7.1.NotesforService ............................................................................................................................................................. 46 3.8.ServicefunctionsinISTA ..................................................................................................................................................................... 46
环境空气从前开口不锈钢底座的槽口吸入,然后通过工作台面下方,从那里吸入并吹入再循环和排气风扇的集气室。负压集气室的“生物动力密封系统”确保所有受污染颗粒都保留在系统内部,并自动吸入集气室或压力室,由主再循环和排气 HEPA 过滤器捕获。风扇系统确保柜体的任何部分都不会受到实验室的正污染压力,从而保护和保护环境和操作人员免受生物污染物的侵害。70% 的过滤空气以 ISO 5 层流模式再循环(通过 H14 HEPA 后)向下进入工作室,其余 30% 通过另一个 H14 HEPA 过滤器排放到大气中。
在不同行星大气环境下对风成过程(风吹粒子)进行实验和模拟,包括地球、火星和土星的卫星土卫六。PAL 目前由 NASA 行星科学部支持(2014 年之前,PAL 由 NASA 行星地质和地球物理学 (PG&G) 计划支持)。PAL 包括位于加利福尼亚州莫菲特菲尔德的 NASA-Ames 研究中心 (ARC) 的设备和设施,亚利桑那州坦佩的亚利桑那州立大学 (ASU) 拥有单独的设备来支持 PAL 活动。PAL 包括美国最大的低压研究压力室之一。PAL 能够在受控实验室条件下对风成过程进行科学研究,并能够为 NASA 的太阳系任务测试和校准航天器仪器和组件,包括那些需要大量低气压的任务。PAL 包括:(1) 火星表面风洞 (MARSWIT) 和 (2) 土卫六风洞
tion 最大的压力室,用于进行低压研究。PAL 的主要目的是在受控实验室条件下对风成过程进行科学研究,并为 NASA 的太阳系任务测试和校准航天器仪器和部件,包括那些需要大量模拟火星大气的任务。PAL 包括:1)火星表面风洞 (MARSWIT) 和 2)泰坦风洞 (TWT),位于加利福尼亚州山景城 NASA 艾姆斯研究中心 (ARC) 的结构动力学大楼 (N-242) 内,由亚利桑那州立大学 (ASU) 管理。另外还有(虽然不是 PAL 设施的正式组成部分)3)环境压力/温度风洞 (ASUWIT) 和 4)位于 ASU 坦佩校区的涡流(尘卷风)发生器 (ASUVG),该校区是 ASU 地球与空间探索学院 (SESE) 和罗纳德格里利行星研究中心的一部分。TWT 于 2012 年 6 月上线。可以从此链接下载 PAL 提案者指南:http://rpif.asu.edu/wordpress/index.php/pal 。
马来西亚近海二氧化碳封存的地质力学可行性分析 A. Haghi 1、S. Otto 1、R. Porjesz 1、J. Formento 1、J. Park 2、H. Gu 2、K. Bt Mohamad 3 1 CGG;2 SKEO;3 PETRONAS 摘要 对深层地质构造中潜在的二氧化碳封存地点进行地质力学筛选是一项巨大的挑战,特别是在沙捞越近海等构造活跃区。在本研究中,我们收集现有日志和井下应力和压力测量值,为该油田三个战略位置的井构建一维力学地球模型。我们绘制了剪应力水平 (SSL) 和压力室 (PR),以评估由于注气引起的断层重新激活或压裂导致二氧化碳通过盖层泄漏的风险。研究区域目前的应力状态以走滑状态为特征,与附近西巴兰线观测到的运动一致。利用世界应力图数据库,我们基于研究区域内11口海上钻井的142个井眼崩裂数据,确定了平均SH方向为N112°(±19°),这与东南东向巽他板块的绝对运动方向一致。根据本研究中改进的评分方法,我们发现SSL和PR值处于可接受至非常好的范围内。然而,摩擦平衡失效分析得出了PR的下限。本文概述的新型地质力学筛选方法提供了一种快速有效的方法,可以在进行详细表征之前识别适合CCS的储层。
描述/背景高压氧疗法(HBOT)是一种将氧气压力更高的组织的技术。可用两种给药方法:系统性和局部使用。全身性HBOT在全身或大型高压氧腔中,患者完全封闭在压力室中,并在大于一个大气的压力下呼吸氧(海平面氧气的压力)。因此,该技术依靠全身循环来向目标部位传递高度氧的血液,通常是伤口。全身HBOT可用于治疗全身性疾病,例如空气或气体栓塞,一氧化碳中毒或梭菌GANGRENE。可以在用纯氧气加压的单盘室中进行处理,或者在较大的多个室内用压缩空气加压的室内,在这种情况下,患者会通过口罩,头部帐篷或气管导管接收纯氧气。局部HBOT局部高压疗法是一种将100%氧气直接输送到略高于大气压力的压力下的湿润的技术。可以假设,高浓度的氧气直接扩散到伤口中,以增加局部细胞氧张力,从而促进伤口愈合。设备由设备组成,用于封闭伤口区域(通常是四肢)和氧气来源;可以使用常规的氧气罐。这些设备可能是一次性的,可以在训练有素的患者中在不监督的情况下使用。局部高压疗法已被研究为糖尿病,静脉暂停,术后感染,坏疽性病变,depubitus溃疡,截肢,皮肤移植,烧伤或冻伤导致的皮肤溃疡的治疗。
摘要 - 最近的空间开发正在实施几种简单,更便宜的火箭技术。环境问题和政府限制后需要用绿色的推进剂来代替目前的(基于氢津)的有毒推进剂,而绩效的损失最少。过氧化氢是绿色推进剂未来的有前途的候选者,因为其柔韧性和良性性质可以提高简单,成本效益和环保的推进,并具有足够的性能,以替代丝津或其他高性能的有毒螺旋桨。因此,该论文专门用于研究基于过氧化氢的推进剂,以用于未来的太空推进应用。这项工作的主要目的是研究绿色推进剂的燃烧性能。首先,我们讨论了使用NASA CEA代码研究了过氧化氢的使用,空间推进的特性和管理氢的特性和管理的各种组合和过氧化氢的组合物。主要目的是在不同的O/F比为2,4,6,8,10的燃烧温度和特定的脉冲值,以及20、25和30 bar的各种压力室值。为此,已经考虑了两种情况来研究液态甲烷的BI推进剂,并在不同的O/F比和室,喉咙和出口时获得了质量分数变化。分析已经考虑了BI推进剂的所有组成和燃烧产物的比较,以便在适当的O/F比和固定腔室压力下实现最佳效率。可以观察到,过氧化氢的浓度对燃烧性能和由于重量浓度而产生的化学成分作用具有显着影响。得出的结论是,过氧化氢对于研究活动的未来发展很有用。索引术语 - 绿色推进剂;过氧化氢;双胶质剂;液态甲烷;太空推进; CEA分析
提案人指南 1.0 NASA 行星风成实验室 (PAL) 1.1 什么是 PAL?行星风成实验室 (PAL) 是一种用于在不同行星大气环境下进行风成过程(风吹粒子)控制实验和模拟的设施,包括地球、火星和土星的卫星土卫六。PAL 目前由 NASA 的行星科学部门提供支持(2014 年之前,PAL 由 NASA 的行星地质和地球物理学 (PG&G) 计划提供支持)。PAL 包括位于加利福尼亚州莫菲特菲尔德的 NASA-Ames 研究中心 (ARC) 的设备和设施,亚利桑那州立大学 (ASU) 位于亚利桑那州坦佩,拥有单独的设备来支持 PAL 活动。PAL 包括美国最大的压力室之一,用于进行低压研究。PAL 可在受控实验室条件下对风成过程进行科学研究,并可对 NASA 太阳系任务的航天器仪器和组件进行测试和校准,包括需要大量低气压的任务。PAL 包括:(1) 火星表面风洞 (MARSWIT) 和 (2) 土卫六风洞 (TWT),位于加利福尼亚州山景城 NASA ARC 的结构动力学大楼 (N-242) 内,由亚利桑那州立大学管理。MARSWIT 和 TWT 由 NASA-Ames 的商店、仪器设施和成像服务提供支持。ARC 的 PAL 设施还配备了一名全职技术人员(在 ARC 工作的 ASU 员工),为行星用户提供服务。亚利桑那州立大学坦佩校区的配套设施包括环境压力/温度风洞 (ASUWIT)。ASU 还拥有涡流(尘卷风)发生器 (ASUVG),但目前归富尔顿工程学院所有(可协商用于行星研究)。ASUWIT 是 ASU 地球与空间探索学院 (SESE) 的一部分,由 SESE 教授 Ian Walker 负责运营。ASUWIT 由 ASU 的 Ronald Greeley 中心的工作人员提供支持。NASA-Ames 的火星表面风洞 (MARSWIT) 于 1976 年投入运行,用于研究陆地和火星条件下风夹带粒子的物理学,进行流场建模实验以评估从小岩石到地貌(缩放)如陨石坑等尺度上的风蚀和沉积,并在火星大气条件下测试航天器仪器和其他组件。MARSWIT 是一个 13 米长的开路边界层风洞,位于一个大型环境室内,在 1 巴至 5 毫巴的大气压下运行,在 1 巴时最大速度为 10.5 米/秒,在 5 毫巴时最大速度为 100 米/秒。该风洞采用开路设计,但位于一个大型压力室的地板上,内部高度为 30 米,内部容积为 13,000 立方米。对于低压风洞运行,将腔室密封并抽空,内部的开路风洞在低压环境中运行。抽空如此大腔室的内部压力需要大量电力,这通常非常昂贵。PAL 从热物理设施的蒸汽真空系统获取真空能量,大约 45 分钟内即可抽真空至火星模拟压力 (4 托)。由于真空系统运行成本高,双方达成协议,PAL 几乎只在与其他赞助 NASA-Ames 蒸汽工厂活动的 NASA-Ames 项目/设施合作时才抽真空。这种安排非常经济高效,但需要提前安排低压运行(需要抽空)。除了此协议外,还提供预留真空服务,前提是提供足够的资金并且没有时间安排冲突。
最近的太空发展正在实施几种更简单、更便宜的火箭技术。出于环保考虑和政府限制,有必要用绿色推进剂取代目前的(肼基)有毒推进剂,同时将性能损失降至最低。过氧化氢是未来绿色推进剂的有希望的候选者,因为它具有灵活性和良性,可以推动简单、经济高效、环保的推进,其性能足以取代肼或其他高性能有毒推进剂。因此,本论文致力于研究过氧化氢基推进剂,以用于未来的太空推进应用。这项工作的主要目的是研究绿色推进剂的燃烧特性。首先,我们讨论了过氧化氢在太空推进中的使用、特性和管理,后来,使用 NASA CEA 代码研究了过氧化氢的各种组合和成分。所进行的活动涉及过氧化氢作为单一推进剂、双推进剂和混合推进剂的研究。主要目的是找出不同 O/F 比 2、4、6、8、10 和各种压力室值 20、25 和 30 bar 下的燃烧温度和比冲值。为此,考虑了两种情况来研究乙醇、RP-1 和液态甲烷的双推进剂,并获得了不同 O/F 比下以及在室、喉部和出口处的质量分数变化。在混合推进剂条件下研究了四种情况,以各种石蜡(SASOL 0907、SASOL 6003、SASOL 6805)作为燃料,并有效研究了添加铝的影响。在双推进剂的情况下,考虑了所有成分并比较了燃烧产物,以便在适当的 O/F 比和固定的室压下实现最佳效率。观察到过氧化氢浓度对燃烧性能有显著影响,化学成分因重量浓度而产生影响。结论是过氧化氢对研究活动的未来发展很有用。