细丝缠绕复合压力容器(CPV)主要用于气体或流体储存。复合容器受到严格的条件,例如临界载荷,极端温度和爆发;因此,对于船舶结构完整性的永久性原位和在线监测方法至关重要。因此,本评论的论文重点介绍了最流行的传感器(例如Piezoeelectric(PZT和PVDF),Piezoresistive(BP和MXENE)以及光纤(SOFO®,OBR和FBG)传感器,以开发出一种结构性健康监测(SHM)来创建自我增压压力容器。本评论论文的新颖性在于提供概述现有作品的概述,涵盖了复合容器中传感器的整合,包括传感器类型,本地化及其对复合完整性的影响。尤其是对传感器集成,尤其是其受监控参数,布局设计和CPV中的布置的分析。此外,分析了宿主复合材料和传感器之间的相互作用,以了解如何将传感器与改变复合容器机械性能的最小缺陷整合。最后,对CPV的SHM系统进行了讨论,为研究人员提供了即将进行的实验工作的基础。
匹兹堡大学通过基于扫描分解的基于扫描模拟的反馈 - 馈线控制执行摘要摘要大大降低了激光粉池床融合添加剂制造的融化池和微观结构的变化:管理当地几次对激光粉末床融合(L-PBF)添加剂生产性能的影响是最高核心的一项优先级。因此,该程序的目的是开发一种基于仿真的反馈馈电控制方法,以维持整个L-PBF部分的熔体池和微观结构的一致性。特定的研究目标包括:(1)基于通过不同过程参数产生的测量熔体池维度开发经过实验验证的计算流体动力学(CFD)模型; (2)开发有效的混合CFD和FEM(有限元方法)模型,以模拟多轨,多层方案; (3)开发基于迭代模拟的反馈 - 馈线控制模型。该项目中的重点材料是基于镍的合金inconel 718,它广泛用于高温核应用中,例如核反应堆核心和热交换器。拟议的研究旨在解决核能社区中L-PBF进程的资格和更广泛采用的关键障碍。核芯和热交换器等核应用通常包含不同尺寸的几何特征,这会导致熔体池和微观结构在整个零件过程中差异很大。拟议研究中的关键创新是开发了混合CFD-FEM模拟模型,该模型为此基于反馈 - 反馈控制方法。通过使用准确的扫描分辨过程模拟,通过调整过程参数(激光功率和扫描速度)来最佳控制熔体池尺寸,预计熔体池和微观结构将在整个复杂部分中更加一致。通过减少新的L-PBF产品开发中昂贵的实验数量,可以以较低的成本进行熔体池和微观结构一致性的巨大改进,以更有效地执行资格。大多数L-PBF热过程模拟模型使用CFD或FEM;但是,前者是准确的,但在计算上非常昂贵,而后者是有效的,但不足以捕获熔体池的尺寸和温度,而随着局部几何形状的变化。在拟议的CIFEM(CFD施加的FEM)过程仿真模型中,瞬态热场是根据高保真CFD模拟计算的,并通过深度学习来推断。这些温度值是根据局部热环境所包含熔体池的局部FEM区域施加的,而其他地方的热传导则由FEM求解。开发的基于CIFEM的工艺模拟预计将是基于CFD的模拟效率的30-50倍,同时保持熔体池和温度场的预测准确性。使用CIFEM模型最佳地控制局部过程参数,预计熔体池尺寸的变化将减少50-70%,从而导致更一致的微观结构。因此,该项目将解决社区中的基本优先事项之一,并有助于促进更广泛的L-PBF程序在安全至关重要的核应用中。首席调查员:Albert C. TO,Albertto@pitt.edu
产品规格 机械存储容量 400 in 3 、900 in 3 最大设计压力 (MDP) 5,000 psig 防爆系数 防爆:1.25x MDP,防爆:2x MDP 空重 9.1 lbm (400 in 3 )、15.4 lbm (900 in 3 ) 衬里材料 Inconel 718(可提供铝、耐腐蚀钢 (CRES)) 安装选项 多种。请咨询。注意:这些规格可以根据客户要求进行修改。请联系 Sierra Space 了解设计选项,以满足特定客户需求。
高性能复合覆盖压力容器(COPV)已在航空航天和汽车行业中使用了很多年,为加压液提供了固有的安全,轻巧和成本效益的存储。COPV通常用于在航天器和发射车辆中为推进剂存储流体。它们还用于在环境和生命支持系统中存储氮和氧气。通常,航空航天应用中加压系统的存储能量相当于数磅的三位苯甲苯(TNT),其幅度取决于所含的数量,压力和流体。除了释放这种能量外,COPV衰竭的后果还包括流体的释放。如果任何飞行硬件能够在爆炸中幸存下来,则包含的液体不再用于其预期目的。在航空航天行业中,杜斯项目中商业空间的出现增强了对高效和安全的压力塞尔的需求。航空航天和汽车部门采取了一些不同的认证方法。AIAA制定的标准中确定的航空航天部门通过组合分析和测试来确定基于绩效的要求。汽车部门通过CGA和ISO制定了规范性要求。在压力容器的整个生命周期中,包括设计,制造,测试,处理和操作阶段,可以通过遵守严格的专业生命周期来实现安全性和高可靠性。
亨斯迈先进材料提供创新解决方案,帮助制造商设计和生产用于氢气储存和运输的复合压力容器。这包括高性能树脂系统以及扩展的材料特性、加工专业知识和工艺模拟。
人类健康是由遗传学(G)和环境(E)决定的。这在暴露于同一环境因素的个体中清楚地说明了这一点。尚未开发出基因 - 环境相互作用(GXE)效应的定量度量,在某些情况下,甚至还没有就该概念达成明确的共识。例如,癌症是否主要来自“运气不好”还是“糟糕的生活方式”。在本文中,我们提供了一组GXE相互作用的示例,作为发病机理的驱动因素。我们强调了epige-netic法规如何代表分子碱基的共同连接方面。我们的论点收敛于GXE记录在细胞表观基因组中的概念,该概念可能代表了解宣告这些多半复杂的调节层的关键。开发一个解码此表观遗传信息的钥匙将提供疾病风险的定量度量。类似于引入估计生物年龄的表观遗传时钟,我们挑衅地提出了“表观遗传评分表”的理论概念,以估计疾病风险。
前言将“NASA 计划和项目”改为“NASA 设施、计划和项目”。编辑性修改并将全文中的 PV/S 改为 PVS。第 3.2 段,澄清了压力释放装置、风险评估代码、测试专用装置、地面 PV/S 定义,将“飞行重量”改为“飞行”。第 4.1 段删除了与 NPR 8715.3 重复的要求。编号了第 4.2 段中的子段,将第 4.2.1 段重新编号为 4.2.3,将 4.2.1 子段重新编号为 4.3.1.x,等等。第 4.2.1.3 段重新编号为 4.2.3.3,并扩大了排除范围。 4.2.1.5 增加了某些蒸汽和冷凝水管道的排除规定,压力不得超过 15 psig,4.2.4 澄清了评估的危险排除要求,将 4.2.3.21 重新编号为 4.2.3.22,并重新措辞以提高清晰度,4.3.3.8 删除“至”,4.3.3.15 增加了新的段落,要求明确定义系统边界,4.5.1 在验证 PVS 是否符合原始要求的选项列表中增加了“或分析”,4.5.10 增加了新的段落,允许根据之前的要求认证的系统在满足某些要求的情况下继续运行,将之前的 4.5.10 重新编号为 4.5.11,重写了 4.5.12。 4.8.2.8.4 将“断裂”改为“爆裂”,表 4,注 1,将“破裂”改为“爆裂”,表 4,将“≥”改为“≤”,4.9.2.6,增加对表 2 的引用,4.9.4.1 删除了由于 NPR 8715.3 第 1.13 段冗余而向总部发送豁免的要求,4.10.1.7,增加“…经 PSM 批准…”,4.10.1.10 增加“或背压调节器”,4.11.2.3 在某些限制条件下,PSM 可以延长 PVS 的认证期以满足运行或测试需要,4.11.4.2 在某些限制条件下,PSM 可以延长部件的认证期以满足运行或测试需要,6.2.1.2 将“断裂”改为“爆裂”
摘要理由化疗诱导的认知障碍(CICI),化学邻磷脂和化学杂志是化学治疗剂影响癌症患者/幸存者的精神功能障碍的常见术语。CICI表现为短期/长期记忆问题和延迟的心理处理,这会干扰一个人的日常活动。了解CICI机制有助于开发可能减轻疾病状况的治疗干预措施。动物模型促进了批判性评估,以阐明基本机制,并构成验证不同治疗假设和策略的组成部分。目标需要对科学文献进行有条理的评估,以了解与化学治疗剂在不同的临床前研究中使用的认知变化。这篇评论主要强调了动物模型,其动物模型是通过各种化学治疗剂单独并结合使用的,其提出的机制导致了认知功能障碍。本综述还指出,健康动物中化学探针的分析,以了解在没有肿瘤和承重肿瘤动物中干预措施的机制,以模仿人类癌症条件,以筛查潜在的候选药物针对Chemobrain。结果在健康和承重肿瘤的动物中证明了由于常用化学治疗剂的大量记忆不足。空间和情感认知障碍,神经营养蛋白的改变,氧化和炎症标志物以及长期增强的变化在不同动物模型中通常会发生变化。结论障碍是癌症化学疗法的严重副作用之一。由于不同趋势改变行为和生化参数的趋势的化学治疗剂机制不同,化学疗法可能会带来明显的风险,从而导致健康和耐肿瘤动物的记忆障碍。
免责声明这一信息是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,或其任何雇员均未对任何信息,设备,产品或过程披露或代表其使用将不会侵犯私人拥有的私有权利。参考文献以商品名称,商标,制造商或其他方式指向任何特定的商业产品,流程或服务,并不一定构成或暗示其认可,建议或受到美国政府或其任何机构的支持。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
摘要。本研究的主要目的是利用有限元方法根据内部设计压力和温度设计和分析压力容器的重要部件。压力容器是一种封闭的容器,用于容纳与环境压力有很大差异的气体或液体。它们已广泛应用于各种应用,例如化学工业、热电厂和核电厂、食品工业和航空工业。因此,压力容器的设计必须非常谨慎,以避免主要由应力引起的故障。需要应力分析的要求来避免压力容器的故障和致命事故。在本研究中,压力容器的重要部件,例如盲法兰、壳体法兰、一些吊环螺栓、排水管、排水管法兰和压力容器的一些连接区域,均根据 ASME 规范使用可靠的材料进行了专门设计。使用基于有限元法 (FEM) 的 Midas NFX 程序对指定点进行有限元建模、等效应力评估和应力分类线 (SCL)。根据 ASME 锅炉和压力容器规范对涉及内部压力和热负荷的设计条件的应力分析进行了评估。结论是,正常运行条件的分析结果满足允许限值。因此,压力容器的当前设计在设计载荷条件下具有足够的强度。