2.2。对样品转移和真空系统的快速和稳定改进已经显着提高了分析速度和精度。•及其具有改进的样品运输系统的快速样品转移系统,样品升压,携带和放置已转变为单个平滑运动,以减少样品负载时间。•X – y样品自动变换器除了标准8样品炮塔外,还有48个样品更换器(ASC48)。X -Y样品更换器增加了样品吞吐量,并使样品处理更加容易。•可以对样品入口端口的真空系统疏散和泄漏速度进行预编程以在两种模式下运行,以便可以降低粉末样品和滤料的散射,并增加长期稳定性。此外,可选的粉末陷阱最小化的小颗粒被吸入真空泵和电阀中。在测量设置期间可选的三个度真空度进一步缩短了分析某些样品和元素所需的时间。•由于超光元件的元素线长波长,自动压力控制(APC),X射线强度对光谱室中的真空度敏感。
豁免(部分)第 8857 [787-8] 号和第 10962 [787-9] 号 §25.841(a)(2)(i)(ii) - 免除以下要求:在因发动机故障引起减压期间,飞机座舱压力高度不得超过 25,000 英尺超过 2 分钟,或不得超过 40,000 英尺持续任何时间。在 FL390 以上飞行时,如果发生非包容性旋翼爆裂事件,则座舱压力很可能会超标,因为下降到 FL250 需要 2 分钟以上,如果故障发生在该高度以上,则可能超过 40,000 英尺。根据机队服务经验,波音公司认为非包容性故障是罕见事件,FAA 的分析也支持这一观点。波音公司观察到,JAA 和 EASA 都没有实施类似的限制。坚固的结构和系统设计以及快速下降的能力是确保飞机乘客安全的关键,也是 787 设计的固有组成部分。其他威胁最小化理念包括飞行员的自动压力需求面罩、电力、乘客氧气、客舱压力控制和扰流板启动等关键系统的分离和冗余。波音公司还提交了减压暴露积分的分析,以表明乘客的严重程度指标低于机械系统协调工作组报告建议的临界值,FAA 已将其作为临时政策采纳。
LocPower是一种获得专利的能源收集解决方案。它由一个能够收获能量的新概念组成,否则在其在流量和压力控制中的正常使用过程中,配备了电气控制面板。LOCPower系统将能量耗散转换为机械功率,然后转换为清洁电力。零发射能量收集,零CO2产生。 LocPower的设计允许智能公用事业和行业控制管道流量和压力,从而提供能源收集功能,而无需放弃实际情况下的安全标准,作为集成系统的监管和控制。 LocPower具有双流控制:通过执行器和涡轮机电力。 直接作用在涡轮机上的电调节可最大程度地减少净压力波动。零发射能量收集,零CO2产生。LocPower的设计允许智能公用事业和行业控制管道流量和压力,从而提供能源收集功能,而无需放弃实际情况下的安全标准,作为集成系统的监管和控制。LocPower具有双流控制:通过执行器和涡轮机电力。直接作用在涡轮机上的电调节可最大程度地减少净压力波动。
摘要:小型农民和其他涂抹者使用杠杆操纵的背包,因为其多功能性,成本和设计。除了苦苦挣扎之外,缺乏压力控制是使用这些喷雾器的最大限制,因为它导致化学制备,不一致的喷雾图案和喷雾液滴尺寸的流量(剂量)可变,这所有这些都会影响喷雾覆盖范围和化学性能。人手不能保持稳定的抽水率。结果是化学物质的误入性和对靶病虫害的无效控制。这项研究发展了一种新的创新,该创新在恒定压力下运作,从而提供了除草剂的均匀沉积,从而可以更好地控制杂草,并提高了尼日利亚的农业生产力。通过丢弃手动操作的活塞和隔膜泵,它可以减少使用常规杠杆式旋转式喷雾器而遇到的繁琐的。匹配可充电电池的设计和安装和直流泵提议减少操作员的任务,以仅携带坦克并用任何一只手喷洒。由DC可充电电池供电的稳定抽水可确保持续的抽水压力和喷雾液滴沉积的均匀性。该项目以适当的技术提供依靠提高尼日利亚的农业生产力和粮食安全。旨在提供一台具有成本效益的机器,以有效地解决尼日利亚和其他发展中国家的作物保护。
结肠靶向药物输送系统作为一种有希望提高药物治疗各种胃肠道疾病疗效的方法,已引起广泛关注。这些系统旨在将药物特异性地输送到结肠,从而改善药物定位,减少全身副作用,并提高患者的依从性。尽管口服途径被认为是给药具有全身作用的药物的最佳方法,但不建议用于给药治疗下消化道 (GI) 疾病的药物,因为这些药物在上消化道 (胃、小肠) 释放,这进一步降低了它们在下消化道的可及性。本综述首先讨论结肠的生理因素,包括其解剖结构、pH 值、酶和运输时间,这些都会影响药物向该区域的输送。然后介绍了结肠靶向的各种方法,包括 pH 依赖性系统、时间依赖性系统、微生物触发系统、药物前体方法向结肠输送药物。它还包括结肠靶向给药的新方法,例如压力控制给药系统、渗透控制给药(OROS-CT)、CODES 技术、Port 系统、Pulsin Cap 系统、微球和粘膜粘附方法。此外,还探索了结肠靶向给药系统在治疗各种疾病(例如炎症性肠病、结直肠癌和肠易激综合征)中的应用。
条件:您是被分配到驻军/作战环境中的作战压力控制 (COSC) 部队的高级行为健康或职业治疗士官。您已收到部队指挥官的口头或书面命令,要求您为作战区域 (AO) 内的部队制定 COSC 支援计划。您将获得当前 COSC 部队实力和设备清单、OPORD、带有战术和医疗覆盖的 AO 地图、ATP 4-02.8、部队健康保护和 ATP 3-90.90 陆军战术标准操作程序。此任务不应在 MOPP 4 中进行训练。标准:根据 ATP 4-02.8 制定 COSC 支援计划,同时利用 GO/NO-GO 标准 100% 准确度遵守所有绩效衡量标准。特殊条件:在训练此任务时,领导者应结合使用陆军条令的八个相互关联的作战变量的情景/情况:政治;军事;经济;社会;信息;基础设施;物理环境、时间 (PMESII-PT) 旨在教育士兵了解作战环境 (OE) 意识,强化价值观,并解决当前陆军问题,以改善士兵对陆军作战的理解。PMESII-PT 变量几乎在每场冲突中都会出现,并作为 OE 的基石。它们可以相互关联、重叠,并共同作为理解 OE 的基础。安全风险:低 MOPP 4:从不
摘要 药物给药可在结肠局部或全身进行。结肠药物输送变得越来越重要,不仅用于输送治疗结肠局部疾病(如克罗恩病、溃疡性结肠炎等)的药物,还用于全身输送治疗性肽、蛋白质、抗糖尿病、抗哮喘和抗高血压药物。必须保护药物以免其在上消化道变质、释放和吸收,才能成功靶向结肠。还必须保证药物在近端结肠中快速释放或受控释放。与压力控制结肠输送胶囊、CODESTM 和渗透控制药物输送 (ORDS-CT) 等较新的结肠靶向药物输送系统 (CTDDS) 方法相比,它们在实现体内位点特异性和制造工艺可行性方面具有独特性。本综述主要比较了结肠靶向药物输送系统 (CTDDS) 的主要方法,即前体药物、pH 和时间依赖系统以及微生物触发系统。这些方法取得的成功有限,并且存在局限性。如果可以将药物直接输送到结肠,治疗可能会更成功。本文还介绍了针对结肠部位给药的各种策略和评估的优缺点。关键词:结肠、靶向药物输送系统、pH、生物聚合物、微生物群落、新策略。
摘要:尽管越来越担心满足世界未来的粮食需求,但仍然有大量的粮食损失和浪费(FLW),尤其是关于水果和蔬菜。对于克尔曼哈省(Kermanshah Province),绿叶供应货物(LVSC)内的效率低下,导致每年39%的叶蔬菜浪费令人震惊。尽管有几项研究提出了减轻这种废物的策略和建议,但这些干预措施对减少FLW的实际影响尚未得到彻底检查或量化。使用系统动态建模,本研究提供了一种新颖的方法来量化干预措施对减少废物的影响。量化结果显示,在生产阶段减少了四种关键干预措施:生物(31.2%)和非生物压力控制(14.4%),改善的教育服务(23.2%)以及获得优质的投入(15.2%)。此外,结果表明,LVSC中的早期因素在确定后期废物积累方面起着至关重要的作用。包装设施和冷供应链基础设施的改进,以及在市场阶段利益相关者之间更好的协调和信息共享,大大有助于减少浪费。此外,对家庭食品购物的有效计划被强调是在消费阶段最大程度地减少废物的关键策略。这种整体方法着重于供应链各个阶段的动作的相互联系,及其对减少叶蔬菜的总体废物的综合作用。
电源操作的压力控制设备由油田井口机的一部分组成,即窒息,脱水剂,离心脱水剂,硫化氢泥浆泥气体分离器,用于水平钻孔的双泥气体分离器;橡胶和金属机械O形圈密封件[机器零件]用于机油和天然气勘探和生产的设备;切割机和机床,即用于切割或塑造或装饰金属或其他材料的动力机器;精确的机床,即硬金属工具,高速钢(HSS)工具,碳化物工具,陶瓷工具,多层晶体钻石(PCD)工具以及涂有钻石的钻石涂层工具以及硬金属工具,所有这些工具都用于材料切割和形成材料;机械密封[机器零件];气动电动工具,即钻,研磨机和磨坊主;采矿业的演习;电钻;气动演习;动力演习;电动工具,即铰刀;电焊接机;激光焊接机;机床,即摩擦焊接工具;摩擦焊接机;采矿机的钻头;电力钻的位;核心钻孔;采矿位;机器的工具位;轴承,作为机器的一部分;机器的滚轮轴承;泵隔膜;机器,即水泥设备,即用于石油和天然气勘探和生产的水泥搅拌机;焊接机,电动机;焊接机的电极;氢燃料电池;用于生产氢气的电解机;用于锂开采的机器;使用地热电地热力的电发电机;油气勘探和生产中使用的有线拖拉机
导管水力发电(CH)为纽约(纽约)提供了一个独特的创新和可靠的机会,以促进可以并且应该追求的能源,经济,环境和社会可持续性。要在2040年实现NY的100%清洁能源的目标,他们必须部署所有可用的可再生能源(NYSS,2019年)。以及那些独立提供权力的人,纽约能源可持续性使命的下一个前沿将取决于其整合和杂交这些能源系统的能力。该州已经拥有一个强大的水力发电平台,为历史上强大的基础提供了扩展。ch利用了水分配系统不仅需要能量,而且可以同时产生它的事实。ch是在先前存在的供水基础设施中掺入水力发电涡轮机,旨在从管道,渡槽和运河等水导管中收回否则浪费的能量。各种私营部门都取决于这些系统,包括市政废物和饮用水设施,农业以及制造业,食品加工,采矿和热电学等行业(Doe&Ornl,2019)。供水系统通过给定导管内的压力产生过多的能量,通常会损害基础设施。例如,管道可能破裂,运河壁侵蚀,从而导致昂贵的维修和维护时间(Doe,2015年)。为了限制这种潜在的降解,需要耗散设备,例如减压阀(PRV),流控制阀(FCV)和导管滴。2。这些压力控制也构成了能量收获的位点,通常位于可以捕获水力发电的位置(DOE,2015年)。目前,由于这些设备将其从基础设施中删除,提供了利用预先生成的可再生能源来源的机会,并降低了过多的压力以避免基础设施损失。尽管这些水电热点可能提供单独的能量,但捕获所含的电力对于非偶然性现场能源回收以及集体经济,社会,社会和环境利益来说都是非常值得的。总体而言,CH通过提供六个共同利益提供了整体可持续性吸引力:1。该技术在联邦一级具有监管优势,因为容量少于40兆瓦的系统免于FERC许可和许可程序,仅需要“短期”意图在30天内获得联邦批准的通知。导管水电在环境方面是独特的,因为它在现有的水管理基础设施中的安装不需要额外的土地利用更改或新的环境开发。相反,它可以减轻温室气体(GHG)污染,以与人类健康一起支持环境,并有助于全球脱碳。