Baden-Württemberg的供水系统是德国最大,传统上最深远的供水之一。每年约有250个城市和市政当局提供约9000万立方米的饮用水。最高质量和高水平的供应安全性是区域供水管理中的中心阶段。在20世纪初,随着工业化的发展,中部内克地区的人口已经迅速增长。当时的一个非常遥远的计划是通过雷姆斯塔尔(Remstal)到斯图加特(Stuttgart)从乌尔姆市的多瑙河山谷(Danube Valley)带来饮用水。这为区域供水系统奠定了基础。
菲律宾伊利甘市放射技术专业学生的学业压力对他们的幸福感和学业成功产生了重大影响。本研究旨在通过制定量身定制的压力管理活动来衡量和解决这种压力。本研究采用探索性顺序混合方法设计,结合定性和定量方法。对放射技术专业学生的定性访谈确定了主要的压力源,包括学业要求、人际冲突和社会期望。根据定性研究结果,制定了一项压力管理计划,该计划结合了自我意识、自我照顾和目标设定。在参加压力管理活动之前和之后,使用问卷测量压力水平。参与者包括已完成至少一个学期的放射技术课程的二年级、三年级和四年级放射技术专业学生。抽样方法包括简单随机抽样和有目的抽样。主题分析确定
摘要:为生物医学问题开发现代解决方案(例如人类康复步态的预测)中的人工智能(AI)正在发展。试图通过安装在单孔上的FIL BRAGG光栅(FBG)传感器,与脑部计算机界面(BCI)设备同时使用足底压力信息,以预测与人的坐着,站立和行走姿势相对应的大脑信号。的姿势分类范围。这些型号用于识别从16通道BCI设备的四个用户的坐,站立和步行活动响应的电极。基于10–20脑电图系统(EEG)的六个电极位置被鉴定为对足底活性最敏感的位置,并发现与脚步运动过程中感觉运动皮层的临床研究一致。与均值最低的FBG数据相对应的大脑脑电图(MSE)值(0.065–0.109)是通过选择长期术语记忆(LSTM)机器学习模型进行的,与复发性神经网络(RNN)和门控复发单元(GRU)模型相比,进行了。
目的 本研究旨在定性评估和比较塔马利教学医院产科接受剖宫产插管全身麻醉的患者中涉及套囊充气的一些技术及其相应的压力估计以及相关并发症。结果 插管后,使用手指触诊测压球囊、预定量的空气和压力计测量气管插管套囊压力。拔除气管插管 24 小时后确定相关副作用。分析包括 384 名患者的数据。患者测量的袖带压力在标准压力计组为 < 20 -30 cmH 2 O,预定量空气组为 20 至 50 cmH 2 O,手指触诊组为 < 20 至 < 50 cmH 2 O。2.3% 的患者记录到副作用
电子压力测量有助于实现过程的安全、精确和节能控制。与温度测量一样,电子压力测量是监测和控制工厂和机械的最重要和最常用的技术。特别是在气动和液压系统中(图1),测量和控制系统压力是安全经济运行的最重要先决条件。在过去的 20 年中,电子压力测量已被引入多种应用,并且每天都有新的应用加入。但是,对仪器的需求与应用一样多样化。这一事实也反映在产品数量非常多上。在电子压力测量的早期,用户只能从少数供应商生产的少数几种型号中进行选择。如今,用户面临着来自众多供应商的众多技术解决方案,因此必须依靠有能力的帮助进行选择。这种选择是一个经典的优化过程,包括比较众多参数和权衡彼此之间的要求。这是为了实现应用中的不同目标、确保最大程度的操作安全性、达到或提高工厂和机械的计划性能以及降低总成本所必需的。错误的决定不仅会带来经济后果,而且还可能带来潜在的安全风险。为了能够正确选择合适的电子压力测量仪表,用户或工程师应该
1. 简介.......................................................................................................................................................................................................................................................................................................................................................................................1 2. 传感器....................................................................................................................................................................................................................................................................................................................................3 2. 1 可变电阻传感器....................................................................................................................................................................................................................................................................3 2. 1 可变电阻传感器....................................................................................................................................................................................................................................................................3 2. 1. 1 电位计压力传感器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2.1 表压隔膜压力传感器..................................................................................................................................6 2.1.2.2 悬臂式传感器..................................................................................................................................................8 2.1.2.3 压力容器传感器..................................................................................................................................................................9 2.1.2.4 嵌入式应变计传感器..................................................................................................................................................9 9 2.1.2.5 非粘结应变计压力传感器....................................................................................................................10 2.1.2.6 10 2.2 可变磁阻压力传感器....................................................................................................................................11 2.2.1 膜片式可变磁阻传感器....................................................................................................................................11 2.2.2 波登管可变磁阻压力传感器....................................................................................................................................12 2.2.3 线性可变差动变压器 (LVDT) 型传感器... . . . . . 13 2.2.4 可变磁阻压力传感器的一般性能 . . . . . . . 13 2 . 3 可变电容压力传感器
确实,世界各地的工业家和研究机构已经开发了自己的仪器应用和评估方法,而且这种趋势在未来仍将继续下去。尽管基于相同的原则,这些方法在不同的组织之间可能存在很大差异,这可能导致用户、承包商和研发组织之间的混淆和误解。近期多公司或跨国联合体发动机建造项目的趋势只会增加协调这些不同方法可能遇到的困难。另一方面,采用标准化程序将创造一种信任的氛围,因为这将有利于更好地相互理解所使用的技术,同时突出所获得数据的质量。