本研究检查了链蛋白酶(STZ)(STZ)和氢化可的松(HC)在男性和女性转基因GLU Creert2 /Rosa26-Eyfp小鼠中给药后代谢和胰岛适应性反应的差异。小鼠每天接受五剂STZ(50 mg/kg,i.p.)或每天10剂量的HC(70 mg/kg,i.p.),在第11天评估参数。STZ诱导的高血糖症在两性中都显而易见,葡萄糖耐受性受损和胰岛素浓度降低。HC在雄性和雌性小鼠中也具有类似的代谢作用,导致循环胰岛素的经典增加指示胰岛素抵抗。对照雄性小鼠的胰岛比女性更大,并且在响应于STZ侮辱的胰岛和β细胞区域显示出更大的减少。此外,雌性STZ小鼠的β细胞凋亡水平低于男性。在HC给药后,与男性相比,雌性小鼠胰岛包含更大比例的α细胞。所有的HC小鼠呈现出β和α-细胞周转率相对可比的增加,雌性小鼠略微容易受到HC诱导的β细胞凋亡的影响。有趣的是,健康的对照雌性小鼠固有地增加了α-β-β细胞的转分化率,这通过HC治疗降低了。在雄性而非雌性的STZ小鼠中,胰高血糖阳性α细胞的数量改变了胰岛素阳性β细胞的数量增加。兼而有之,尽管在STZ或HC小鼠中没有明显的性别特异性改变,但胰岛形态的微妙差异强调了性激素对胰岛的影响,并且在解释男性和女性之间观察时要注意注意的重要性。
Philippe Janssen、John C. Stella、Hervé Piégay、Bianca Räpple、Bernard Pont 等人。退化河流沿岸森林组成和功能特征与自然演替的差异,具有多种压力源遗留。整体环境科学,2020 年,721,第 15/137730 页。10.1016/j.scitotenv.2020.137730。hal-03026265
DNA甲基化(DNAM)已在陆地植物中对环境变化进行了深入的研究,但在海洋植物中,其时间尺度的动态变化仍未开发。海草posidonia oceanica是地球上生长最慢的植物中的最慢,特别容易受到海洋变暖和局部人为压力的影响。在这里,我们分析了从富营养化的沿海地区收集的植物中DNAM变化的动力学(即oli-gotrophic,ol;富营养化,欧盟),并暴露于非生物压力源(营养,温度升高及其组合)。全球DNAM(%5-MC)的水平和DNAM参与的关键基因的表达在一次,两周和五周后评估。结果表明,根据环境刺激,暴露时间和植物的起源,植物之间存在明显的不同。%5-MC的水平在最初的压力暴露期间较高,尤其是在OL植物中,该植物上调了几乎所有涉及DNAM的基因。相反,欧盟的植物显示出较低的表达水平,在长期暴露于压力源的情况下,特别是对温度的影响。这些发现表明,在压力暴露期间,DNAM在大洋洲P. Oceanica中是动态的,并强调了环境表观遗传变化可能与调节适应和表型差异有关,具体取决于当地条件。
生活压力会增加多种精神病理学的风险,部分原因是它改变了与绩效监控有关的神经过程。然而,这些压力认知效应如何受到生活压力源的特定时间和类型的影响仍不清楚。为了填补这一空白,我们研究了不同的社会心理特征和压力源的发展时间与错误相关负波 (ERN) 之间的关系,ERN 是事件相关电位 (ERP) 波形中的负向偏转,在错误发生后 0 到 100 毫秒内观察到。203 名新兴成年人样本执行了一项引发 ERN 的箭头侧翼任务,并完成了一项基于访谈的终生压力暴露测量。调整其他发展时期的压力严重程度后,压力对绩效监控的影响为小到中等,因此,在青春期早期经历的更严重的总体压力暴露以及更严重的社会评价压力显著预示着 ERN 的增强。这些结果表明,青春期早期可能是一个敏感的发展时期,在此期间,压力暴露可能会导致与表现监控有关的神经网络产生持久的适应。
生物传感器技术有可能彻底改变水产养殖行业,但是选择标记方法,操作模式(独立系统与无线系统)和遥测技术最终取决于生活物种,生活阶段和研究问题。尤其是Aefishbit是一种由三轴加速度计,微处理器,电池和RFID标签组成的小型独立设备,该设备设计为外部连接到OperCulum。这个独特的位置用于提供通过板载算法处理的活动模式(X和Y轴信号)和呼吸频率(Z轴信号)的同时测量。最初证明了在游泳隧道呼吸仪中锻炼鱼的有效性,并用作可靠的工具,用于在此处测试在自由降低的吉尔特黑头泡沫中单个监测全体生物特征的人,在此处测试了面对广泛的生物抗性和非生物压力的鱼类。还评估了标记方法的影响,基于使用具有柔性热乙烯环的Monel穿孔鱼标记,并且在评估后10天发现了10天后发现10天的刺激性损害,operculum损害或gill板性损害的迹象。该设备的自主权是连续记录的6小时,并在实验期间(2 - 8天)定期进行2分钟窗口的可重新编程滞后时间和2分钟窗口的记录时间表。这种过程强调了禁食体重减轻和孔呼吸呼吸之间的负线性相关性,成为呼吸频率是基础代谢率的可靠指标。生物传感信号还强调了在一单年和三年的鱼类中进行比较时,年轻鱼的呼吸率更高和呼吸率提高。此外,AEFISHBIT测量结果证明了严重缺氧期间呼吸频率的普遍增加(2-3 ppm),但是被归类为主动鱼类的个体也具有增加氧气可用性环境中SUP移植逃生反应的体育活动增加。同样,我们还观察到体育活动的总体增加,而储罐空间的可用性下降,这可以有助于建立养殖鱼类的福利标准更严格。最后,呼吸频率的降低是用粘液粘液肠肠肠肠肠球菌在实验感染的鱼类中的寄生肠炎进展的一致诊断标记。总的来说,这项工作构成了使用生物传感器技术作为实验室规模上养殖鱼类的单个全生物行为分析的可靠工具的概念证明,这有助于提高水产养殖行业的动物福利和生产力。
自全球冠状病毒大流行爆发以来,许多公民报告称压力水平和压力相关疾病显著增加。先前的研究表明,高水平的压力是短期和长期压力相关疾病的重要原因。本研究的目的是探索不同应对策略与 COVID-19 相关经历之间的认知、社会和人际关系。我们的目标是在暴露于 COVID 相关压力源的个体中建立外部压力管理技术与内部应对能力之间的联系。通过当下观察,不加评判地利用对自己内在和外在状态的认识;称为正念。基于正念的减压已被证明有助于开发和实践有利于保持长期心理健康的认知应对策略。正念不需要专业培训或物理设备,可能适用于不同的文化背景和人口统计数据。这项研究提出,使用基于正念的内部和外部应对技术的人报告的 COVID 相关压力源得分最低。在线调查数据收集探讨了受访者应对全球 COVID-19 大流行期间常见压力的身体和心理实践。
$%! ! & ' '(!)' * $+# % $+# , %! - . - * / ! & $0 (! 0 1! * % * ! +# , ! - ( (1 2 - $ - 3 4 5 % ' - & 6 & ( ' !!! ! * $ % +# , (1 ' ! +# , - " ! - * ' 7' & & * $0 ( % * $0 1 % 8 4 - & - & * 6 !& " !$&&'--'-%-&!4'-