公园综合能源系统(PIE)在实现可持续能源发展和碳中性方面起着重要作用。此外,其优化调度可以提高能源利用率的效率并降低能源系统的运行成本。然而,可再生能源的随机性和波动性和负载不稳定都为其最佳操作带来了挑战。提出了一个最佳的派对框架,该框架在三个不同的时间尺度下构建了操作模型,包括日前,日内和实时。考虑到不同时间尺度下的响应特征和成本组成,需求响应也分为三个级别。示例分析表明,多时间尺度优化调度模型不仅可以达到派对的供求平衡,从而减少了可再生能源的频率和压力载荷曲线的自动,还可以降低运行成本并提高能源系统的可靠性。
15.补充说明由船舶结构委员会赞助。由其成员机构共同资助。16.摘要 本报告概述并比较了国际海事组织、美国船级社、法国船级社、挪威船级社、德国劳氏船级社、英国劳氏船级社、日本海事协会和意大利船级社在高速船结构设计方面的应用、要求和方法。比较包括: • 船级类型 • 服务限制或类别 • 规范/规则涵盖的速度和尺寸范围 • 基于性能或规定性设计标准 • 指定的关键参数(船体压力载荷、剖面模量要求等)使用美国船级社 (ABS) 和挪威船级社 (DNV) 的规则对大型高速单体船进行了具体计算,以便提供有意义的定量比较。17.关键词结构“高速船” 18.分发声明分发可通过以下方式向公众提供:国家技术信息服务美国商务部斯普林菲尔德,VA 22151 电话(703) 487-4650
与其他金属和复合材料相比,铝具有制造工艺简单、耐腐蚀、重量轻和成本低等优点[7]。设计飞机结构的重要参数包括抗疲劳性、密度、断裂韧性、强度和耐腐蚀性[7]。此外,在静态重量下受到拉伸时,上侧会产生压缩载荷,而下侧则相反;因此,在飞行过程中需要仔细优化拉伸和压缩强度[7]。因此,铝作为最轻的金属,可以轻松取代其他金属并承受由于飞机大型化而增加的机翼压力载荷[8]。在这方面,航空航天工业使用不同类型的铝合金,其中一些在表2中给出。然而,常见的类别大多来自2xxx和7xxx系列[9]。2000系列合金具有良好的抗疲劳裂纹扩展能力并拥有卓越的损伤容限。因此,它们通常用于飞机的机身蒙皮和下机翼,其中断裂韧性(即抗裂纹扩展)是一个重要的设计参数 [6] 。 Al2024-T3 是机身结构中最常用的 2000 系列合金 [10] 。 7000 系列通常用于上机翼蒙皮,其中强度是主要的设计因素 [6] 。 Al7075-T6 是