本研究专门研究基于空心缸检验的细砂的膨胀行为。培养基和致密样品以恒定的平均应力测试,通过将扭转角度施加剪切菌株= 1、2、3和4%。膨胀曲线以及剪切波速度测量值,以研究并讨论剪切模量降解曲线中剪切应变振幅的影响。测量的应力和应变路径被用来比较四个高级本构模型的性能,尤其是在描述沙子的膨胀行为时。从其本构方程的角度来看,检查了具有各种材料模型的模拟之间的差异。可以得出结论,只要确保对材料参数的适当校准,所有四个模型都可以正确预测扭转剪切测试。关键字:扭转剪切测试;构成模型;压力降低;剪切模量降解
硅石,又称二氧化硅,占地壳质量的 10% 以上。它用于从微电子(晶圆生产)到食品工业中使用的部件等各种应用。在电力工业中,硅石并不那么受欢迎,它被认为是导致锅炉结垢和蒸汽涡轮叶片上沉积物的主要杂质之一。锅炉结垢是由水中沉淀出的杂质在传热表面形成沉积物而引起的。随着水垢的积累,它会降低传热速率。这会导致局部热点,从而导致锅炉管过热和破裂,造成代价高昂的锅炉停运。此外,未经处理的锅炉结垢会因热阻滞而降低锅炉效率,并因不定期和更频繁的锅炉排污而增加运行成本。定子涡轮叶片上的结垢会导致蒸汽流速发生变化和压力降低,从而降低蒸汽涡轮的效率和输出能力。
热泵将室外空气中的低温热量转化为高温热量。为了实现这一点,风扇吸入空气,并将其引导至蒸发器 (1)。蒸发器包含液体传热介质。它在低温低压下沸腾并蒸发。从空气中提取所需的蒸发热,在此过程中空气会冷却下来。然后将空气释放回大气中。蒸发的传热介质由压缩机 (2) 吸入并压缩至更高的压力。压缩后的气态传热介质被推入冷凝器 (3),在那里它在高压高温下冷凝。冷凝热被传递给加热水,导致水温升高。传输到加热水的能量相当于先前从室外空气中提取的能量,加上压缩所需的少量电能。冷凝器和膨胀阀 (4) 上游的压力很高。通过膨胀阀,发生温度敏感的压力降低,导致压力和温度下降。然后循环再次开始。
部门,以加强基础经济增长。”没有运输部门,气候保护就无法成功。鉴于全球经济和人口增长的扩大,与2019年相比,到2030年,公路运输量将增长40%以上。。 这将使商用车成为碳中性移动性的关键杠杆。 “我们致力于塑造可持续的运输部门,以期加强经济增长的基础,” Mahle管理委员会主席兼首席执行官Arnd Franz周一在汉诺威的IAA运输公司周一说。 技术组开发了用于电池电池和燃料电池车辆的组件和系统,并使内燃机适合使用氢和其他可再生燃料。 在今年的国际商用车展览会上,马勒首次展示了带有燃料电池外围设备的燃料电池卡车,热管理和功能齐全的重型电动轴的完整系统。 其他产品创新包括高性能,避免燃油的蒸发冷却系统,用于苛刻的燃料电池和电动汽车,以及仿生风扇,使电动卡车在满载时或在快速充电期间通过使声音压力降低声音级别。 现在所有可用的电动卡车都包含大量的Mahle产品,该小组参与了目前正在进行的燃料电池车和氢发动机的所有主要开发项目。鉴于全球经济和人口增长的扩大,与2019年相比,到2030年,公路运输量将增长40%以上。这将使商用车成为碳中性移动性的关键杠杆。“我们致力于塑造可持续的运输部门,以期加强经济增长的基础,” Mahle管理委员会主席兼首席执行官Arnd Franz周一在汉诺威的IAA运输公司周一说。技术组开发了用于电池电池和燃料电池车辆的组件和系统,并使内燃机适合使用氢和其他可再生燃料。在今年的国际商用车展览会上,马勒首次展示了带有燃料电池外围设备的燃料电池卡车,热管理和功能齐全的重型电动轴的完整系统。其他产品创新包括高性能,避免燃油的蒸发冷却系统,用于苛刻的燃料电池和电动汽车,以及仿生风扇,使电动卡车在满载时或在快速充电期间通过使声音压力降低声音级别。现在所有可用的电动卡车都包含大量的Mahle产品,该小组参与了目前正在进行的燃料电池车和氢发动机的所有主要开发项目。
1. 引言 统计数据显示,燃油和液压系统单元的大多数故障与精密副和密封元件的故障有关。此外,大多数故障(包括液压单元故障)都是由于控制和分配装置以及柱塞、活塞和板副的故障引起的,这些装置执行泵和液压马达的置换或动力元件的功能。摩擦增加的最常见原因是摩擦表面的形成和微动腐蚀,这是破坏受振动影响的部件配合金属表面的腐蚀-磨蚀过程,这通常是由于液压分配机构中的消耗品(过滤器和液压油本身)的延迟更换造成的,这会导致工作体上的压力降低,从而导致机器的工作能力下降和效率降低。伺服液压驱动器执行机构的自发运动或间歇性操作是由于开关装置中的摩擦增加引起的。泵送泵组件的损坏和液压马达的损坏通常是由于柱塞、板或活塞转子对的卡住造成的。在这方面,分析运行条件和确定精密对失效的原因值得特别注意
声音就是运动。拨动吉他弦时,附近的空气也会随之移动。图 1.1 显示了不同拨动状态下的吉他弦。左侧是静止的吉他弦,右侧悬挂着十几个小空气分子。吉他弦静止时,当地大气压约为 14.7 磅/平方英寸——海平面气压。拨动吉他弦时,它会短暂地向右移动,空气分子会挤压得更紧密——也就是说,它们被压缩到更高的压力。a 然后,经过很短的时间(百分之一或千分之一秒,取决于音符的音高),吉他弦会弹回到静止位置的方向,并继续移动超过初始静止状态,直到它稍微向左移动。然后右侧的空气分子再次散开,压力降低。但它们不会立即回到拨动琴弦之前的相同间距。它们会稍微超出一点,所以现在它们比弦移动之前分散得更多——它们处于较低的压力下。然后它们再次反弹在一起,再次分散开来,依此类推,每次都少一点,直到最终运动停止,振动减弱到
吞咽困难是帕金森氏病(PD)的常见症状(PD),与肺炎,窒息,营养不良和生活质量降低有关,并且是PD患者的主要死亡原因。PD患者的舌功能障碍会影响吞咽的口腔相,包括将推注的形成和推进到咽中。评估舌头和口感之间产生的舌头压力是一种定量测量舌功能并且与PD中的吞咽困难有关的方法。两种评估方法用于测量舌头压力:吞咽过程中的舌强度和舌压。先前测量PD舌压力的研究报告说,吞咽过程中舌头的强度和压力降低,以及长时间的舌头压力上升时间,这是与PD严重程度和吞咽困难有关的症状。在这个迷你审查中,我们提出了一种测量舌压压力并讨论其与PD中吞咽困难的关系的方法。我们还描述了舌头压力测量研究中的局限性和未来观点。
使用横跨左心室辅助装置(LVAD)和右心室辅助设备(RVAD)操作的条件进行的体外液压性能测量,创建并验证了AVAD CFD模型。放置在整个泵中的静态钻头被用来对CFD结果进行评价。然后使用CFD模型来评估液压性能的变化,并通过不同的转子轴向位置进行识别并确定潜在的设计改进。以转子速度从2,300至3,600转/分钟进行液压性能,并以2.0至8.0 l/min的流速进行测量。CFD预测的液压升高与体外测量的数据非常吻合,在2300 rpm的6.5%以内,对于较高的转子速度,在3.5%以内。CFD成功预测了壁静电压力,与7%以内的实验值相匹配。在泵的运行中观察到泵的流场中的高度相似性和圆周均匀性,作为LVAD和RVAD。次级叶轮轴向清除率降低导致峰值流量停留时间降低10%,次级叶轮上的静态压力降低。这些较低的静态处方表明,次级叶轮的向上转子力量降低,并且泵的压力灵敏度所需的增加。
在 ESC/BSG 系统中,冷却气体(氦气)的漏流被测量为夹紧性能的标准:大量的 BSG 漏流意味着晶圆未正确夹紧,因此冷却气体未到达晶圆。相反,少量的漏流代表晶圆夹紧良好且冷却效率高。在这种情况下,20 sccm 或以上的氦气流量代表夹紧彻底失败以及工具故障。图 2 显示在“A”和“B”型载体上制备的样品晶圆的冷却气体漏流。在所有施加电压下,弯曲程度较高的晶圆的 BSG 流量最高,漏流值已达到最大值 20 sccm。但是,只要背面冷却气体压力较低,较高电压条件就会消除弯曲对 BSG 流量的影响。换句话说,需要将 BSG 压力降低至约 10 Torr 以下才能夹住弯曲的晶圆,这会导致背面冷却系统的边缘性更严格,并且等离子蚀刻等高温工艺中晶圆过热的可能性更高。
EPP3 系列是一系列带有闭环集成电子控制的电动遥控气动压力调节器。它可以根据电控制信号按比例调节出口压力。EPP3 调节器包括一个传统的伺服操作气动压力调节器,其中先导室由两个脉冲宽度调制的 2 通电磁阀中的一个或另一个供给。压力传感器测量调节器的出口压力并向放大器提供反馈信号。控制信号和反馈信号之间的任何差异都会转换为数字信号,以激励一个或另一个 2 通阀的线圈,以校正调节器的位置。控制信号可以是电压 (0 - 10V) 或电流 (4 - 20 mA)。“填充阀”的入口直接连接到调节器的主入口 P;通电后,该阀将填充伺服腔,以增加调节器出口 A 处的压力。当另一个“排气阀”通电时(调节器出口 A 处的压力降低),伺服腔的压力将通过位于盖子和主体之间的排放孔排出,并直接排入大气,无需消音器。主要调节压力的排放将通过快速排气 R 进行。建议使用传统消音器。两个电磁阀都确保伺服腔的填充或排空,以增加或减少调节器出口的压力。在阀门的静止位置,所有端口都被阻塞。