在纽约州对液压压裂的历史禁令近十年后,一家最近成立的州外公司试图利用法律A中的漏洞来制定危险,奇异且深远的计划,以在南部地区与液体二氧化碳(CO 2)一起在南部地区使用液体二氧化碳(CO 2)。该技术具有传统压裂的许多气候和环境问题,以及CO 2独有的危险。社区和环境拥护者正确地意识到,这种新计划仅是一种拼命而可疑的尝试,将压裂带到传统压裂是非法的地区。国家领导人不必以一种新的危险形式的化石燃料生产形式开放,而是必须弥合法律漏洞,拒绝碳捕获碳占领,并致力于为所有人生产清洁,负担得起的能源。
微小的污染物在运输完整的单元格和模块和包装组装时可能会粘附在电池组件上。此外,在组装过程中执行焊接工作时,可能会在焊接位置发生毛刺。如果执行抗压测试时,模块或单元中存在任何污染或毛刺,则会发生电弧排放。当时,造成排放的污染或毛刺将被烧毁。因此,重复抗压压测试将无法检测到缺陷。但是,发生放电的位置可能会遭受微小的绝缘缺陷。由于此类缺陷降低了电池的绝缘性能,因此会导致电池降解。如果他们随着时间的推移恶化,它们可能会导致电池过热或着火。ST5680提供了ARC检测功能,以确保在承受电压测试期间可靠检测弧排出事件。
在全球范围内的拟合水短缺越来越普遍。由于河流,湖泊和含水层等传统直接资源无法满足淡水的不断增长的需求,因此已经开发出了新兴技术,例如蒸馏和基于膜的分离,以从越来越具有挑战性的来源(例如废水或海水)中获得淡水。不幸的是,这些技术在纯化过程中消耗了大量的能量,在能量和水之间做出了艰难的选择。一个独特但相关的挑战是资源提取操作的残差管理(例如液压压裂),其中大规模蒸发池通常代表生产力的瓶颈,这是由于废水量的缓慢减少。最近,一种新型技术,通常被称为太阳蒸汽产生,已经出现了通过利用太阳能来实现污染/盐水净化的,这可能有助于减轻
页岩表征对于理解其作为碳氢化合物储层的潜力和优化液压压裂操作至关重要。在这项研究中,我们评估了页岩表征的三种方法的有效性:X射线衍射(XRD),阳离子交换能力(CEC)和线性溶胀仪(LSM)。该研究是对来自特定位置的一组页岩样品进行的。使用XRD分析样品以确定其矿物学,CEC以测量其离子交换能力和LSM以评估其肿胀特性。结果表明粘土稳定剂和KCL盐的表现要好得多。不同添加剂的浓度可能对肿胀产生正/负面影响。CEC值可以通过使用XRD结果确定的统计方法来确定每个形成。总体而言,该研究强调了使用XRD,CEC和LSM组合进行全面的页岩表征的潜力。关键字:页岩岩属性; FRAC流体优化;碳氢化合物储层
摘要。[目的]超声检查可用于非侵入性分析人体的任何横截面并测量组织弹性,厚度和亮度。进行了这项研究,以检查静止肌肉肌肉的定量和定性变化,并在最大闭塞下进行评估,并评估这些变化与个人一般健康之间的关系。[参与者和方法]研究队列组成30名健康成年人。研究了基本参与者信息(性别,年龄,身高,体重,体重指数,体内脂肪,最大咬合力,手绘力量和舌压力)与咬肌肌肉超声检查数据之间的相关性。[结果]男性的咬合肌肉厚度明显高于女性。体重和体重指数与咬肌厚度正相关。体重指数和体内脂肪百分比与咬肌亮度正相关。舌压压与手工束强度正相关。[结论]我们对肌肉厚度和亮度的分析表明,超声检查可能有助于评估咬肌的数量和质量,而咬肌的状况可能与个人的整体健康状况相关。关键词:超声检查,咬肌,肌肉厚度
最近提出了一种基于pH-swing的电化学过程,以从直接空气捕获(DAC)再生支出的碱性吸收剂。在这项工作中,我们通过实验研究并理论上模拟了两种优化策略,以进一步减少这种新型电化学过程的能源消耗。首先,在CO 2解吸期间将部分真空应用于气相,以提高气体产量。当CO 2在气相中的CO 2部分压从0.9降低到0.3 atm时,电化学电池的能耗降低了12%至15%。第二,磷酸盐和硫酸盐作为背景电解质对碱性吸收剂进行测试,从而通过最大程度地减少电化学细胞中的欧姆损失来降低能源消耗。磷酸盐的最佳浓度为0.1 m,而在较高浓度的磷酸盐下,CO 2的生产率受到总碳进食率或高酸化溶液的限制。此外,由于与磷酸盐相比,硫酸盐的PKA低和高摩尔电导率,硫酸盐添加的能量消耗比磷酸盐添加更低。最后,最低的实验能量消耗为247 kJ mol -1 CO 2,CO 2二压压为0.3 atm和0.1 m的硫酸盐在150 a m -2的电流密度下添加0.1 m,而我们的数学模型预测理论最小能量消耗为138 kJ mol -1在相同的条件下。总体而言,研究的优化策略推动了节能电力驱动的流程以直接捕获的开发。
钻井技术的生命周期评估(LCA)对其环境影响进行了全面评估,包括从原材料获取到寿命终止处置的所有阶段。本研究的重点是关键钻井技术,包括旋转钻井,方向钻孔,液压压裂和深水钻孔,并评估其在各种生命周期阶段的环境绩效:原材料的获取,制造,运输,安装,安装和操作,维护和维修,维护和维修,以及生命的生命分配。LCA在钻井生命周期中揭示了重要的环境热点,尤其是在原材料提取,运输和操作活动等阶段。这些热点对环境影响不成比例,包括高能消耗,温室气体排放,用水,空气污染,土地使用和栖息地破坏以及产生废物。为了解决这些影响,该研究通过绩效基准,最佳实践和技术创新来确定改善的机会。关键缓解策略包括提高资源效率,优化能源使用以及实施先进的废物管理实践。这项研究强调了研发,协作和法规合规性在钻探操作中的环境可持续性中的重要性。技术创新,例如更高效的钻井设备,改进的流体管理系统和高级监控技术,对减少环境足迹至关重要。总体而言,将环境可持续性整合到钻井操作中对于缓解环境风险,确保监管合规性以及维护行业的社会许可以进行运营至关重要。本研究为行业利益相关者,政策制定者和环境拥护者提供了宝贵的见解和建议,以促进可持续的钻探实践并减少资源提取活动的生态影响。
早安主席格里菲斯(Griffith),排名成员卡斯特(Castor)和委员会成员。我的名字叫杰里米·哈雷尔(Jeremy Harrell),我是ClearPath的首席战略官,Clearpath是一个501(c)(3)组织,该组织制定并提高了政策,以加速创新以减少和消除全球能源的排放。感谢您有机会今天作证并举行重要的听证会。美国面临激烈的全球竞争。中国和俄罗斯等对手正在部署全球数千亿美元,以促进其地理战略利益,以便在能源部门占据主导地位和连接的供应链。中国和俄罗斯花了数十年的时间投资于他们现在在采矿中(甚至更重要的)在处理关键材料的主要地位。中国负责处理90%的稀土元素和60%至70%的锂和钴,通常劳动习惯差,并且无视环境影响。1对于铀类似,一些预测表明,到2030年,中国和俄罗斯将控制大约63%的全球富集能力。2同时,在美国,只需要十年才能允许矿山。美国紧随其后。从项目融资到政府许可,项目开发周期必须更快地行动,以便重新获得基于我们能源工业基础的供应链并变得独立。大规模的能源创新通常需要汇集私人和公共投资,以扩大部署并降低成本。该模型适用于太阳,风,天然气和其他清洁能源技术。例如,德克萨斯州企业家乔治·米切尔(George Mitchell)想出了如何分解页岩岩石以释放固定在里面的天然气。这个过程称为液压压裂,最初在能源部(DOE)的支持下脱颖而出,该过程在1970年代和1990年代成本共享的研发和示威活动,以及1980年代至2000年代初的税收抵免。3幸运的是,过去几年实现了有针对性的联邦能源创新政策,如果正确实施,可以帮助将资源生产带回美国,并帮助建立与美国页岩气类似的下一个成功故事。
日期:2021年10月25日至:托马斯·B·莫迪卡(Thomas B.为关键计划,服务和义务制定长期替代资金计划,目前取决于石油收入。本备忘录提供了对此请求的回应。纽约市获得了与该市具有财务利益的韦尔斯石油生产有关的大量收入。本备忘录提供了纽约市获得的收入的背景,讨论了减少城市对石油收入的依赖的方法,并概述了除非市议会指导员工采取不同步骤和行动,否则工作人员将采取的步骤。石油是自然而有限的自然资源。该城市拥有通过井钻探开发的石油储量。出售生产的石油是为了受益于国家,城市和其他矿产兴趣所有者的利益。该城市的油井不会随时在其生命周期中使用液压压裂刺激治疗。通过油田承包商,该市将水注入井中,以管理沉降并增强油的提取。该市确保其承包商遵循所有法规,并且由于其石油运营而不会出现不利条件。该市的石油收入是通过三个主要来源产生的:(1)用于资助一般基金类型运营的桶税; (2)销售生产的石油收入,从而使Tidelands和普通基金受益; (3)对一般基金有利的石油生产成本收取的费用。在20财年,可用于城市服务的1,890万美元的石油收入。在耗资1,890万美元中,大约860万美元用于Tidelands运营,其余1,030万美元用于通用基金服务。注意到,高地石油基金会获得石油收入,但这些收入用于直接受益。在高地石油基金中收到了约2600万美元,但其中700万美元用于资助废油遗弃成本。石油收入每年都可能有很大差异,这主要是因为石油价格通常非常波动。下一页上的表显示了20财年石油运营实际收入的组成部分。在20财年,石油的平均价格约为每桶45美元。在22财年中,我们增加了新的桶税,估计将在22财年再产生130万美元的石油收入。
地热能(“我们脚下的热量”)长期以来一直被誉为几乎无法取之不尽的大量基本电源来源(Tester等,2007),但在全球能量组合中仍然是可再生能源的利基提供者。最近,地热能提取已成为具有巨大潜力的重要清洁能源。这在很大程度上是由于最近从热,干岩(HDR)提取地热的概念的爆炸驱动的,克服了对稀有和地理上稀疏的水热资源的需求,并为“任何地方的地热”创造了希望。已经提出了几种概念来提取HDR的能量。宽松地,这些概念属于“增强(或工程)地热系统”(例如)的权限,尽管某些文献将诸如闭环地热系统(Beckers等,2022)和连接的多边系统(Holmes等,2021)(创建“热交所”(Heateanger Asshep As Sparted Geother)(ag as and Geotherm)(Hymes et and System)(Holmes et al,2021)分类(Beckers等,2022)。在这种情况下,经典EG是指一个概念,其中两个(或更多)井是通过资源中的断裂网络连接的。连接裂缝网络是通过液压压裂和/或水力剪切(在资源中重新激活现有的天然断裂)创建的。在配对井之间创建了连接的断裂网络后,就可以通过喷油器孔注入工作流体。流体流过资源中的连接网络,提取热量,然后通过配对生产商产生。Fervo(Norbeck等,2023)和犹他州Forge(Allis and Moore,2019年)的最新成功使EGS更接近现实。语义,自1970年代开始在芬顿山(Fenton Hill)开始以来,经典的EGS方法历史上一直受到最大的关注和资金(Brown等,2012)。这两个示范项目均处于200°C左右的温度下。最近,对这些成功在Superhot Rock(SHR)中的成功兴趣,资源温度超过375°C,已经蒸蒸日上,这证明了美国能源部关于下一代地热的商业升降机报告的最新途径(2024)。同时,创新在AGS地区继续进行,Eavor(Holmes等,2021)和XG(Moncarz和Suryanarayana,2022年)取得了进展。Khodayar和Björnsson(2024)对已实施或正在开发的各种常规(水热)和非常规(例如,AGS,地热存储)系统提供了出色的评论。