曲线)。相关的声感应电压信号显示为绿点,即所谓的 AE 命中。每个命中的峰值幅度以 dB AE 为单位绘制(参考值 1 μV)。在给定的示例中,时间相关的力曲线在接触力高达约 230 mN 时是非线性的,同时在阈值电压 U th 23 dB AE 以上测量到大量 AE 命中。这种影响是由于压头随着接触载荷的增加而穿透 Al-Cu 顶层,该顶层发生塑性变形并且压痕深度不断增加(见图 7a)。AE 命中的数量及其峰值幅度随着穿透深度的增加而减少。在接触力超过 230 mN 时,只会发生孤立的低幅度命中。在 Al-Cu 顶层上压痕时 SiO x 层开始开裂,接触力 F c 为 367 mN,峰值幅度 A peak 为 55.9 dB AE 。图 6b 绘制了裂纹诱发的 AE 冲击的示例性波信号及其整个信号持续时间。[1]
工作计划 已经开展了一项广泛的实验计划,使用了六种不同类型的商用仪器、五种压头几何形状、四种不同的涂层系统和三种散装参考材料。该项目已确定硬度和模量值对以下因素的敏感性:仪器校准和环境;压头几何校准;详细加载循环的仪器参数;以及涂层类型和厚度等材料效应。已评估选定的模型,以根据测量的复合压痕响应计算涂层特性。已对这些模型进行了比较、测试和验证,并确定了它们的适用范围。验证包括将模型响应与实验确定的压痕响应进行比较。
(1) 蒸发器出口/入口温度+15°C/+20°C,外部环境温度+25°C,总吸收功率包括压缩机、风扇和泵 (2) 蒸发器出口/入口温度+7°C/+12°C,外部环境温度+35°C,总吸收功率包括压缩机、风扇和泵 (3) 标准设备配置,蒸发器出口/入口温度+15°C/+20°C (4) 防护等级IP33 (5) 泵可实现的最小/最大水流量 (6) 最小/最大水流量下设备出口的可用压头 (7) 声功率根据 ISO 3744 测量确定。10m 处的声压平均值是在距离冷凝器盘管侧面 10m 处的反射面上自由场中获得的,高度为 1.6m。值公差为 ± 2dB。声级指标称条件下满负荷运行的机组。除非另有说明,以上数据指机组配置为标准轴流风扇和标准 P3 泵,双频型号以 50Hz 运行。数据根据 UNI EN 14511-2013 声明。SEPR HT:数据根据欧洲法规 (EU) 2016/2281 声明,涉及冷却产品和高温工艺冷却器的生态设计要求。
第一个多针连接器通过将导体焊接到不可拆卸触点来端接。然而,高温应用和对简单可靠的现场服务的需求导致了带有可拆卸触点的连接器的引入。这些是压接到导体上而不是焊接的。第一个为压接这些新触点而开发的标准压接工具于 20 世纪 60 年代初推出。MS3191-1 是一张军用图纸,定义了此工具及其附件。MS3191-1 采用四压痕压接模式以及控制压头行程(压接深度)的正向止动定位器。MS3191-1 设计在操作简便性和压接性能之间进行了折衷,因为任何给定触点的压接深度都无法调整,以适应不同直径的导体。但是,它适用于那个时代的压接连接器。很快推出了一种改进的工具设计,具有独立可调的压接深度,即 MS3191-4。MS3191-4 具有内部调节功能,完全独立于定位器,允许选择七个单独的压接深度,无论触点的线筒尺寸如何,都可以对从 AWG 12 到 26 的导体进行最佳压接。
第一个多针连接器通过将导体焊接到不可拆卸触点来端接。然而,高温应用和对简单可靠的现场服务的需求导致了带有可拆卸触点的连接器的引入。这些是压接到导体上而不是焊接的。第一个为压接这些新触点而开发的标准压接工具于 20 世纪 60 年代初推出。MS3191-1 是一张军用图纸,定义了此工具及其附件。MS3191-1 采用四压痕压接模式以及控制压头行程(压接深度)的正向止动定位器。MS3191-1 设计在操作简便性和压接性能之间进行了折衷,因为任何给定触点的压接深度都无法调整,以适应不同直径的导体。但是,它适用于那个时代的压接连接器。很快推出了一种改进的工具设计,具有独立可调的压接深度,即 MS3191-4。MS3191-4 具有内部调节功能,完全独立于定位器,允许选择七个单独的压接深度,无论触点的线筒尺寸如何,都可以对从 AWG 12 到 26 的导体进行最佳压接。
在全球发电中,可再生能源的份额不断增加,定义了对有效且灵活的储能解决方案的需求。及其技术成熟的植物设计和广泛的经济潜力通常可以符合这些需求。,但尤其是对于需要低头PHES应用的低地国家,目前的涡轮机械技术在实现欧洲绿色交易的背景下,没有可行的LH-Phes解决方案是竞争性的储能技术。低头液压涡轮机械,智能操作方案和强大的现场识别算法的新开发项目可以将这些植物塑造出可行的未来技术。因此,这项研究表明,通过对逆向旋转,可变的,可逆的泵涡轮激素的新设计,专门为低头操作而设计,PHE可以在很高的效率下在各种液压头和放电上运行。此外,它表明,在平行动作中使用多个CR-RPT单元时,可以选择不同的功率设置以在快速反应时间下实现高效率。此外,考虑到最紧凑的植物设计,新开发的操作模拟代码用于支持RPT设计开发,这是由原型0在纬度为31 m的原型0实现的,而大坝直径为1600 m。因此,通过提供适合市场需求的网格服务来最大化收入,将投资成本最小化。是智能站点识别算法的新颖开发,它支持高潜在海上站点(在大北海)的RPT设计开发。
硅仍然是技术上最重要的材料之一,广泛应用于各种微电子和微机电系统 (MEMS) 设备和传感器。几十年的深入工业研究已经带来了一些最先进的硅材料加工路线,但有关其机械性能的一些细节仍然是个谜。这并不是因为缺乏努力,而是因为其复杂性。就变形机制而言,位错塑性、断裂和各种相变都是可能的,具体取决于加载速率、应力状态、尺寸、温度、杂质的存在等。本研究重点关注硅中的相变,这种相变发生在以压缩载荷为主的围压下 [1-3]。这使得仪器压痕成为诱导此类行为的流行选择 [4,5],我们在各种温度下都进行了这种测试。本研究的独特之处在于联合使用了两种事后显微镜技术:压痕的拉曼映射和聚焦离子束 (FIB) 加工提升的透射电子显微镜 (TEM)。这样做是为了试图更详细地了解不仅发生了哪些相变,而且了解它们在空间中的分布情况以及这种相变与压头下方局部应力状态的关系。在高温下,使用配备 800C 的 Hysitron PI88 原位 SEM 压痕和配备金刚石 Berkovich 尖端的原型高真空平台纳米压痕系统测试了具有 <001> 取向和 p 型掺杂的硅晶片,电阻率为 0.001-0.005 Ω-cm,相当于 1x1019 - 1x1020 cm-3 硼掺杂。沿着压痕的对角线准备提取件,从而将一个面和一个角一分为二。在减薄和转移到半网格之前,先沉积保护性铂。样品制备采用 FEI Versa 3D 双束和 EasyLift 操纵器(Thermo Fischer Scientific,希尔斯伯勒),并使用在明场中以 300keV 运行的 Technai F30 TEM 进行成像。图 1 显示了硅从室温到 450°C 的纳米压痕行为变化的摘要。其中,硬度最初随着温度升高到大约 150°C,然后开始稳步下降。这是一个相当有趣的观察结果,因为当性能由位错塑性介导时,硬度和屈服强度通常会随着温度的升高而降低 - 这表明在低温范围内其他行为占主导地位。这也体现在压痕的后期 SEM 成像中,因为在室温下会出现剥落,在 100°C 时会消失,然后在 200°C 时变成延性流动。剥落归因于卸载过程中晶格膨胀的相变。图 2 展示了一些关于解释这种硬度变化的变形机制变化的理解,其中显示了事后拉曼图和 TEM 图像。此处,室温拉曼图显示压头压痕下有一个强烈的相变区域,这从 TEM 成像中也可以看出来。当温度升高到 100°C 时,拉曼光谱显示从非晶态、R8 和 BC8 硅相的复杂混合物急剧转变为六方相和金刚石立方体相。事后 TEM 也显示相变区域的变化,特别是总相变材料的减少。在 200°C 时,拉曼光谱显示为金刚石立方体,含有少量六方材料。TEM 显示压痕下似乎以孪生塑性为主,几乎没有明显的相变材料。
毛细血管本质上是无处不在的,直接参与了生活系统的功能。[1]天然多孔培养基的特征是随机(例如,土壤,海绵)或有序(例如木材,肺)结构。他们的人造顾问在大多数行业,例如过滤器,瓷砖(编织和非织造),吸收剂,陶瓷或组织脚手架中广泛采用。[2]工程设计了多孔材料的毛细管特性,以提高热量,[3]机械,[4]电气,[5]光学,[6]和生物医学[7]性能。除了本质上多孔的材料(例如,金属有机框架[8])外,该研究还集中在制造过程上,这些工艺可以很好地构成物质添加(例如3D打印[1,9])或去除(例如,从Bulking [6,10])从Bulk buts from Bulk Interal in Bulk Interipition from bualte interctuction。具有工程多功能性的多孔材料对被动能源转换设备特别希望。这些设备通常不需要高质量的能源输入,并且由于没有移动机械零件,需要低维护,并且具有成本效益。此外,它们对于离网装置是最佳的,通常,它们促进了与水能Nexus相关的行业的可持续过渡。[11]这些设备可以利用多孔毛细管介质克服小液压头并在整个系统中提供工作流体,而无需进行主动的机械或电气组合。[19]这些材料提供了有限的优化程度已经提出了用于蒸汽产生的应用,[12]淡化,[13,14]盐沉淀,[15]水卫生,[16]太阳能热能收集,[6]和冷却,[17]等。清楚地,优化这种被动设备中多孔材料的毛细血管特性对于提高其整体性能至关重要:较差的毛细管可能会导致连续蒸发过程中的干燥,并且会显着限制最大可实现的设备尺寸。[18]因此,亚最佳毛细血管特性将显着阻碍系统总体的生产率和尺度能力。被动能量转换设备通常使用非构成毛细管材料(例如纸张或商业纺织品)作为移动工作流体的被动组件。
在过去的几年中,欧盟的使用化石燃料(煤炭,燃料和天然气)在欧盟中降低了电力,涉及温室气体排放的显着减少。全球气候目标将是在2050年达到零排放,而CO 2排放的最后一部分的减少可能来自可再生能源,绿色氢和基于可再生的电力。在当前向可持续经济的能源过渡中,需要大规模的储能系统来增加间歇性可再生能源的整合,例如风和太阳能光伏。使用废弃地下空间对环境影响较低的地下储能系统可能是在欧洲电网网格中提供辅助服务的替代方法。在本期特刊中,将地下泵存储水电,压缩空气存储和氢能存储系统的进步作为有希望的解决方案,以解决可变可再生能源引起的间歇性问题。如今,抽水储存水力发电(PSH)是最成熟的大规模存储技术。PHS系统是用于为电网提供电力存储服务的主要技术,占安装全球存储容量的161 GW。PHS需要加倍,在2050年达到325 GW。PSH系统由两个在不同高度的水库组成。存储的能量取决于水的质量和上层和下储层之间的净液压头。往返的能量效率在0.7-0.8之间。Menendez等。系统地形局限性侵蚀区域和环境影响目前阻碍了世界各地这些系统的发展。相反,废弃的地下空间可以促进地下泵送的水电(UPSH)系统的安装,那里至少一个水库在地下。[1]分析了UPSH植物在封闭矿山中提供辅助服务的经济可行性。考虑了下部储层的两种不同选择:(i)利用当前的采矿基础设施,以及(ii)挖掘新的隧道网络。二级法规,偏差管理和第三级法规服务考虑在4-10 h之间的全部负载下每天的涡轮机周期时间来优化经济结果。的投资成本为366 m€。最后,估计内部回报率为7.10%,将参与伊比利亚辅助服务市场,考虑到涡轮机周期时间为8小时。由于投资成本很高,每当必须钻取新的水库时,就会降低利用能力。UPSH植物的可行性研究还必须包括地质机械和水力地质方面。Menendez等。[2]研究了封闭煤矿中地下水库的地质力学性能。砂岩和页岩岩质量被认为是岩石块,可以用30 m 2和200 m长的横截面挖掘隧道网络。进行了三维数值模型,以分析发掘周围塑料带的变形和厚度。