摘要 — 我们解决了支持后量子密码 (PQC) 及其在安全关键型车对车 (V2V) 通信中的巨大开销这一非典型挑战,处理了 V2V 有限无线电频谱内严格的开销和延迟限制。例如,我们表明,当前用于支持 V2V 签名验证的频谱几乎不可能采用 PQC。因此,我们提出了一种消息签名证书传输的调度技术(我们发现目前高达 93% 的冗余度),该技术可以学习自适应地减少无线电频谱的使用。结合使用,我们设计了 PQC 和 V2V 的第一个集成,在可用频谱的情况下满足上述严格约束。具体而言,我们分析了 NIST 为标准化而选择的三种 PQ 签名算法以及 XMSS (RFC 8391),并提出了一种部分混合身份验证协议(传统密码学和 PQC 的定制融合),用于我们概述的向完全 PQ V2V 过渡的初期过渡期的 V2V 生态系统中。我们的可证明安全协议有效地平衡了安全性和性能,这一点已通过软件定义无线电 (USRP)、商用 V2V 设备以及道路交通和 V2V 模拟器进行了实验证明。我们展示了我们的联合传输调度优化和部分混合设计在现实条件下可扩展且可靠,与目前最先进的技术相比,平均延迟微不足道(每条消息 0.39 毫秒)。
我们介绍 SPARC:用于从头算实空间计算的模拟包。SPARC 可以在静态和动态设置中对孤立系统(例如分子)以及扩展系统(例如晶体和表面)执行 Kohn-Sham 密度泛函理论计算。它安装/使用简单,与最先进的平面波代码具有很强的竞争力,在少数处理器上表现出可比的性能,并且随着处理器数量的增加而具有越来越大的优势。值得注意的是,SPARC 将大型并行计算机上具有 O(100-500)个原子的系统的求解时间缩短到几秒钟,比平面波同类产品高出一个数量级甚至更多。© 2021 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
对孤立系统中热化及其破坏的研究使人们对非平衡量子态及其对初始条件的依赖性有了更深入的了解。初始条件的作用因量子多体疤痕的存在而突出,量子多体疤痕是一种特殊的非热态,具有潜在的有效超自旋结构,嵌入在原本混乱的多体谱中。自旋海森堡和 XXZ 模型及其在一维和更高维度中的变体已被证明具有精确的量子多体疤痕,表现出可在合成和凝聚态系统中实现的自旋螺旋态的完美复兴。受这些进展的启发,我们提出了实验上可访问的、局部的、时间相关的协议来探索空间热化概况,并强调系统的不同部分如何热化并影响超自旋的命运。我们根据驱动自旋与其余自旋之间的相互作用,确定了铁磁(X 极化)初始状态的不同参数范围,包括局部非热行为,其中驱动自旋有效解耦,充当“冷”点,同时有助于加热其他自旋。我们还确定了超自旋在长时间内保持对局部驱动弹性的参数范围。我们开发了一个实空间和 Floquet 空间图来解释我们的数值观察,并做出了可以在各种实验装置中测试的预测。
金融和经济活动理论与实践中的当前问题:第四届全俄(全国)科学与实践会议材料汇编,2022 年 3 月 30 日。/ 编辑委员会: N. V. Bokova [等人];俄罗斯普列汉诺夫经济大学沃罗涅日分校。G.V.普列汉诺夫。– 沃罗涅日:“科学书籍”出版印刷中心,2022 年。– 212 页。– ISBN 978-5-4446-1705-2。– 文本:直接。该汇编展示了经济学院经济学学科教师、从业人员和学生的科学研究成果,这些成果在第四届全俄(全国)科学实践会议“金融和经济活动理论与实践专题问题”上进行了检验,该会议由普列汉诺夫俄罗斯经济大学沃罗涅日分校会计、分析和审计系和金融与信贷系于 2022 年 3 月 30 日举办。面向经济大学的学生和研究生、经济学学科教师,以及所有对金融领域当前问题和现代俄罗斯经济实体部门感兴趣的人。
•环境考虑•保护要素•涵洞和密封•土地修复•土壤压实水平•调试(通风)•接受建议•正在进行的服务•建筑法律•接受法•接受
摘要。医生要对呼吸道疾病做出最准确的诊断,必须尽可能准确地洞察问题。成像技术可以观察身体内部,不幸的是,例如肺是一个器官,没有造影剂就无法获得图像。此外,可以使用的方法是全身体积描记法或更好的选择,肺量计。肺量计的测量是通过肺速度描记器或肺量计进行的。肺量计测量肺容量和肺容量。肺速度描记器是流量测量装置,但也可以用于间接测量肺容量和容量。肺量图是肺量计测量的结果。
新的 48V 技术已在电动机系统中标准化,以减少电动汽车 (EV) 的排放。它取代了传统的 12V 系统,提供额外的高电压电池来满足增加的功率需求。除了动力系统的电动机和电池组外,48V 系统还具有其他直接操作的优势,例如加热和空调应用。该技术提高了功率能力,可用于启动时更重的负载,例如空调和催化转化器。这进而推动了适合 48V 配置的本地 DC-DC 转换器和无源元件(包括电容器和电感器)的进步。这样的发展可能导致该技术在全电池电动系统中得到广泛采用,从而有助于将电池组的 400 或 800 V 输出转换为 48 V 以分配到整个车辆。
电感器和变压器磁芯由软磁材料制成。“软”磁材料很容易磁化和消磁,并且只有在通过改变缠绕在其周围的绕组(或“匝”)中的电流来激发这些磁芯并产生电磁场时,才会出现磁场。术语“软”表示磁场不是永久的,当电流停止时磁场就会消失。这与我们通常所说的磁铁不同。“永久”磁铁通常用于拾取或将物体附着在含铁(铁质)金属上(例如冰箱磁铁),并且无需绕组或外部刺激即可产生永久磁场。
- 第 iii 页:更新访问 NASA 技术标准的 URL。正确的 URL 为 http://standards.nasa.gov/ - 第 iii 页:将对 NASA 5300.4(3J- 1) 和 NASA 5300.4(3M) 的引用分别更新为 NASA-STD- 8739.1 和 NASA-STD-8739.2。 - 第 iv 页:插入修订页面并相应重新编号目录。 - 第 2.1 段将 NHB 8060.1 的引用更改为 NASA-STD-6001,将 NHB 1700.1(V1) 的引用更改为 NPR 8715.3。 - 第 3.2 段从缩略词列表中删除 NHB,并将 NPR 添加到缩略词列表中 - 第 4.3 段第 4 条:将句子更改为“压接。压接时应使用绞合线。禁止压接实心线。”禁止压接镀锡绞线。” - 第 5.7 段:将培训中心地址更改为:GSFC,培训中心,编号 300.1,7000 Columbia Gateway Dr.,Columbia,MD。21046 - 第 6.8 段:将句子改为:“按照 ASTM-E-595 进行测试时,在真空或低压下使用的所有材料释放的总质量损失 (TML) 不得超过 1.0% 并且收集的挥发性可凝性物质 (CVCM) 不得超过 0.1%。 - 第 6.8 段:将第二句中的“NHB 8060.1”更改为“NASA-STD- 6001”。 - 第 7.3 段第 11 号将 NHB 8060.1 更改为 NASA- STD-6001 - 第 9.7 段:将胶带“可应用于捆扎”更改为“应应用于捆扎”。 - 第 14.1 段将 NHB 1700.1 更改为 NPR 8715.3 - 第 18.2 段第 6.c 号:对于绝缘电阻 (IR) 测试,将“至少 1 分钟,或按照测试程序中的规定”更改为“直到达到稳定读数,时间不超过 1 分钟,或按照测试程序中的规定”。