塑性计具有两个平行压板。下压板构成仪器的底座,上压板可通过手柄垂直升降。测试包括在两个平行板之间压缩指定体积的圆柱形样品,并在指定时间后测量压缩高度。样品由厚度约为 15 毫米的未硫化橡胶片制成。当上压板降低时,对样品施加 49 ±0.05N 的力。千分表读取测试样品的厚度,即塑性数值。
和夹具已制作(见图 2)。压板直径为 70 毫米,其表面粗糙度为 100 纳米,平均表面粗糙度 Ra = 11 纳米。底座上的三个支撑垫
自动纤维铺放 (AFP) 已成为航空航天工业中复合材料的流行加工技术,因为它能够在制造复杂部件时将预浸料或胶带精确地放置在准确的位置。本文介绍了用于复合材料飞机机身蒙皮制造的 AFP 心轴的设计、分析和制造。根据设计要求,开发了 AFP 心轴,并通过有限元法进行了数值研究。考虑了心轴结构自重和来自 AFP 机头的 2940 N 负载,进行了线性静态载荷分析。还进行了模态分析以确定心轴的固有频率。这些分析证实了所提出的心轴符合设计要求。然后制造了一个原型心轴并用于制造复合材料机身蒙皮。对 AFP 机身蒙皮曲面层压板、等效平面 AFP 和手工铺层层压板进行了材料载荷测试。平面 AFP 和手工铺层层压板在拉伸和压缩方面表现出几乎相同的强度结果。与手工铺层相比,平面 AFP 层压板的拉伸模量高 5.2%,压缩模量低 12.6%。AFP 曲面层压板的极限抗压强度比平面层压板高 1.6% 至 8.7%。FEM 模拟预测的强度比平面层压板测试结果的拉伸强度高 4%,压缩强度高 11%。
收集有关您的流程和应用的详细信息有助于我们设计满足您特定需求的系统。这可确保包含所有必要的功能,例如用于均匀温度分布的隔热罩或在振动测试期间用于固定立方体卫星的特殊固定装置。这包括了解系统的用途,例如卫星组件测试、材料排气研究或热循环测试。被测设备的尺寸、材料和零件数量会影响腔室的内部配置,包括隔热罩、压板和固定装置的布置。
1. 打开纸箱。• 从运输纸箱中取出压接器、压板 (1)、尼龙覆盖软管组件 (1)、资料封套 (1)、支架 (2 件)、磁铁 (1)、.05 内六角扳手 (1) 和 Molykote 润滑剂 (1)。在气缸顶部前部找到分配给压接器的序列号,并记录在第一页以供将来参考。2. 将压接器安装到支架上。• 将压接器放在平坦、支撑良好的表面上(例如工作台顶部或服务车辆的车厢),手柄朝右。
1. 打开纸箱。• 从运输纸箱中取出压接器、压板 (1)、尼龙覆盖软管组件 (1)、资料封套 (1)、支架 (2 件)、磁铁 (1)、.05 内六角扳手 (1) 和 Molykote 润滑剂 (1)。在气缸顶部前部找到分配给压接器的序列号,并记录在第一页以供将来参考。2. 将压接器安装到支架上。• 将压接器放在平坦、支撑良好的表面上(例如工作台顶部或服务车辆的车厢),手柄朝右。
TC350™ Plus 层压板是陶瓷填充的 PTFE 基玻璃编织增强复合材料,可为电路设计人员提供经济高效、性能卓越、热性能增强的材料。这种新一代 PTFE 基层压板的热导率为 1.24W/mK,非常适合高功率微波和工业加热应用,这些应用需要更高的最高工作温度、低电路损耗和出色的电路板内散热性能。此外,与其他竞争层压板相比,所使用的先进填料系统使复合材料具有更好的机械钻孔性能。这将降低电路板制造过程中的制造成本。
为了将该电极用于PEM水电解器,需要使用热压机制造由电解质膜和电极堆叠而成的大型MEA。但是,我们发现很难保持大型MEA的厚度均匀,并且需要以小于1毫米的精度对准MEA组件。为了以小于1毫米的精度对准3000cm2级MEA的组件,我们提高了压板的表面精度,选择了最佳缓冲材料,并设计了独特的对准工艺技术。我们成功地将施加在MEA上的压力变化降低到约10%,从而可以在不影响氢气生产性能的情况下制造大型MEA。我们将致力于尽早将大型MEA商业化,以实现P2G在社会上的广泛使用。