1 上海交通大学先进微纳米制造技术国家重点实验室,上海 200240,中国 2 上海交通大学电子信息与电气工程学院微纳电子学系,上海 200240,中国 3 上海交通大学医学院、上海交通大学口腔医学院、国家口腔医学中心、国家口腔疾病临床研究中心、上海市口腔医学重点实验室,上海 200011,中国 4 新加坡国立大学电气与计算机工程系,4 Engineering Drive 3,117576,新加坡 5 新加坡国立大学传感器与微机电系统中心,4 Engineering Drive 3,117576,新加坡
可穿戴电子系统的快速发展需要一种可持续的能源,这种能源可以从周围环境中获取能量,而不需要频繁充电。压电聚合物薄膜具有柔韧性、良好的压电性,以及由于其固有极化而具有的与环境无关的稳定性能,是制造压电纳米发电机 (PENG) 以从环境中获取机械能的理想选择。然而,由于分子极化和不可拉伸性,它们的大部分应用仅限于基于 3-3 方向压电效应的按压模式能量收集。在本研究中,通过在基于聚合物薄膜的 PENG 上 3D 打印拉胀结构,PENG 的弯曲变形可以转化为良好控制的平面内拉伸变形,从而实现 3-1 方向压电效应。首次将膨胀结构的同向弯曲效应应用于柔性能量收集装置,使以前未开发的薄膜弯曲变形成为一种有价值的能量收集装置,并将 PENG 的弯曲输出电压提高了 8.3 倍。膨胀结构辅助的 PENG 还被证明是一种传感器,可通过安装在人体和软机器人手指的不同关节上来感应弯曲角度并监测运动。
低维铁电体、亚铁电体和反铁电体由于其不同寻常的极性、压电、电热和热电特性而受到迫切的科学关注。层状二维范德华材料(如 CuInP 2 (S,Se) 6 单层、薄膜和纳米薄片)的铁电特性的应变工程和应变控制具有根本性的意义,尤其有望在纳米级非易失性存储器、能量转换和存储、纳米冷却器和传感器等高级应用中得到应用。在这里,我们研究了半导体电极覆盖的亚电介质 CuInP 2 S 6 薄应变膜的极性、压电、电热和热电特性,并揭示了失配应变对这些特性的异常强烈影响。特别是,失配应变的符号及其大小决定了压电、电热和热电响应的复杂行为。与许多其他铁电薄膜相比,应变对这些特性的影响是相反的,即“异常的”,对于这些铁电薄膜,平面外剩余极化、压电、电热和热电响应对于拉伸应变强烈增加,对于压缩应变则减小或消失。
几年前电子设备的功率要求很高。但是,随着基于Internet的系统的技术发展,低功率的微电子设备的设计,WSN和IoT设备的设计变得必要。在这些系统中,大小和功率要求很低,在大多数情况下,电池的替代是具有挑战性的。对于这些微电子和物联网设备,丰富的能量收割机非常有用。在不同的丰富能源资源中,用压电悬臂束能量收割机收集振动能量。这项研究工作介绍了能量收割机(EH)的设计和分析,该功能收割机(EH)中包含一个单个压电悬臂梁,该悬挂式横梁捕获了悬架桥的振动能量。这种方法通过将压电能量收获构建为解决低功率设备面临的力量挑战的解决方案,将两件事联系在一起,从而使过渡变得更加自然和连接。设计中的主要挑战是将桥梁的共振频率与压电EH相匹配,该压电EH约为2.5Hz,以提取最大功率。为了克服Comsol多物理学中的特征频率分析。单光束压电EH的3D几何形状是在Comsol多物理固体作品中设计和分析的。在这项研究工作中,基于COMSOL多物理学中的第一个六种特征频率分析,单光束压电频率的几何参数与特征频率之间建立了关系。选择(0.98 m/s²)的力是因为它避免了与关键系统组件共鸣。对于有限元分析(FEA),通过在悬架桥中施加等于振动力(0.98m/ s2)的力来振动压电单光束收割机。收割机的输出的共振频率为2.5Hz。压电的输出为2.5Hz的800毫米伏特非常低。还将压电EH的输出结果与具有单分支结构的悬臂梁进行了比较。
摘要 - 力和接近传感器是机器人技术的关键,尤其是在与人类在实际非结构化环境中与人进行物理或认知互动的协作机器人应用时。但是,用于机器人技术的大多数现有传感器都受到以下限制:1)它们的范围,测量单个参数/事件,并且通常需要多种类型的传感器; 2)制造昂贵,将它们的用途限制为严格必要的,并且通常会损害冗余; 3)具有无效或降低的物理灵活性,需要适应各种机器人结构的进一步成本。本文提出了一种基于压抑和自态现象的新型机械功能和接近杂种传感器。传感器即使在复杂形的机器人结构上,传感器也易于应用。描述了制造过程,包括控制电路,机械设计和数据采集。具有传感器表征的实验性三个体系,重点是力 - 电阻和自paCaCaCACIAL距离响应。传感器的多功能性,灵活性,薄度(厚度为1毫米),准确性(降低的漂移)和可重复性证明了其在多个域中的适用性。最后,传感器在两种不同的情况下成功地介绍了:手工引导机器人(通过触摸命令)和人类 - 机器人碰撞避免(通过接近性检测)。
压电材料由各种类型的晶体、聚合物、陶瓷和复合材料组成,它们用于需要电场和机械应变耦合的众多应用中。本期特刊的主要目的是收集当前有助于利用压电技术推动工程应用发展的研究成果。感兴趣的具体主题包括但不限于:使用压电材料和设备进行能量收集、传感器和执行器、压电复合材料、压电材料的设计/制造、压电材料的建模、压电纳米材料、压电复合材料的特性、压电梁和板的振动分析、压电设备在工程和医学应用中的用途、材料中的压电性以及使用压电现象和/或设备的任何其他高级研究或应用。我们期待您的投稿。
抽象的压电能量收集系统在通过低频操作为微电动设备供电方面起着至关重要的作用。在这里,已经为低功率电子设备开发了一种新型的压电能量收集设备。开发的压电能量收集系统由一个悬臂向外投射,悬臂一端连接到风圈,另一端连接到扭转弹簧。开发的压电能量收集系统在通电的微电器设备中的应用。悬臂向内放在压电电晶体堆栈中。当风击中时,会在防线器中产生涡流,该涡流振荡并在压电晶体堆栈中产生压力,以开发电能。从压电能量收集系统获得的输出电压不会影响压电晶体的任何输入频率。获得的结果表明,开发的压电能量收集系统会产生120-200 eV,为2.9×10 16 –4.84×10 16 Hz频率,考虑到基本电荷单元为40,对于4-9 m/s的可变风流。这项研究旨在开发用于低功率微电动设备的有效风能的压电能量收集系统。
项目描述:压电MEMS麦克风具有消除对真空包装,低功耗和制造简单性的需求。这些优势已导致对压电技术的进一步研究。无论传感技术如何,MEMS麦克风都有一些基本参数,例如灵敏度,信噪比(SNR),带宽,输出阻抗等。这些参数共同确定麦克风的性能[2]。压电mems麦克风的性能受到压电材料的很大影响。中,氧化锌(ZnO),锆钛酸铅(PZT)和硝酸铝(ALN)是最常见的压电材料,每个材料都有其自身的特征[3]。与其他两种材料的制造难度相比,Aln由于与CMOS技术的兼容性而引起了很多关注。尽管ALN的压电系数不是这三种材料中最高的,但有一些方法可以改善其压电系数。最近,研究人员发现,将sc(SC)掺入ALN可以有效地改善其压电性能。然后,可以根据掺杂的硝化铝板进一步改善压电mems麦克风的性能指数。[1] Y. Seo,D。Corona和N. A.Hall,“关于压电麦克风的理论最大可实现的信噪比(SNR),”传感器和执行器A,2017年。[2] VM1000低噪声底部端口麦克风数据表,Vesper Technologies Inc,2017年。[3] Y.-C。 Chen,S.-C。[3] Y.-C。 Chen,S.-C。lo,S。Wang,Y.-J。Wang,M。Wu和W. Fang,“在PZT/SI Unimorph Cantilever设计上,用于增强压电MEMS麦克风的信噪比,”,《微机械和微工程学杂志》,第1卷。31,105003(16pp),2021。
摘要:压电执行器具有响应速度快、结构紧凑、精度高、产生巨大阻挡力以及操作简便等特点,在先进分配领域中正被迫切地采用,以提高喷射性能并满足微电子封装、胶粘剂键合和小型化行业的精度要求。本研究重点是一种压电驱动的紧凑型流体分配器的基础设计和开发,该分配器利用一级杠杆的原理来放大针头位移,并扩大所开发的喷射分配器的应用领域。利用基本杠杆原理,进行基于几何的建模,以制造一种常闭铰链杠杆式分配器的工作原型。进行了初步实验,以见证所制造的分配器每秒输送 100 个工作流体点的可行性,这将提供一种分配各种流体的新型装置,并且所提出的放大机制也适用于各种其他压电应用。
摘要:道路上的电动汽车数量继续增加,为充电阶段找到实用的解决方案至关重要,尤其是在长途旅行时。为使电动电动电池充电的充电线圈供电,我们将压电发电机放置在这项工作中,以从道路干扰中回收振动能量。我们还采用了太阳能,使电动汽车电池能够适当地充电。接下来,使用ANSYS,我们构建了一个3D模型的传输和接收线圈,并评估了它们的效率。最后,我们利用MATLAB Simulink评估了两个不同的能源的效率。结果让我们比较两个能源,并表明压电发电机由于性能差而不适合用作主要能源。