如今,已经为广泛的应用开发了不同类型的能量收割机,其中有压电能量收割机在可穿戴电子产品中显示出很大的潜力,因为它们能够从机械振动或变形等环境来源收集能量。由于提高了效率,灵活性和生物相容性,目前的技术正在利用压电聚合物。在这个项目中,一种简单的方法,即滴铸件,用于制备基于聚(氟化氟化物 - 三氟乙烯)(p(vdf-trfe))的能量收割机。碳酸盐溶剂用于有效地制定P(VDF-TRFE)粉末的稳定墨水。退火和电晕螺栓以增强压电性能。在不同的力和电阻下测量了压电设备的机电性能。带有铂的压电设备,因为顶部电极分别产生高达3.8 V和0.025 µW cm -2的电压和功率密度。结果表明,基于P(VDF-TRFE)基于P(VDF-TRFE)的未来有希望的未来,以柔性,自供电和可穿戴的电子应用中的压电能量收集设备。
摘要:微型水力系统是一种能量转换方法,可从流动水能到电能发电。希望通过使用附着在流出排放的连续流中的微水电发电机来实现。如今,已经引入了各种先进的技术。 当今与可再生能源相关的研究已被极为探索。 该项目将研究雨滴动能的可能性,作为可再生能量和方法,将机械能从雨滴转化为电能的方法。 在该表面的每个压力平均可以生成每种压电1伏。 在串联连接中使用更多压电将为负载提供更多功率。 来自压电产生的交流电流(AC)的输出,然后使用整流器电路转换为直流电流(DC)。 该项目还包括用于生成的电源存储的电力库。 关键字:降雨能量,微水涡轮机,直流电动机和压电传感器。如今,已经引入了各种先进的技术。当今与可再生能源相关的研究已被极为探索。该项目将研究雨滴动能的可能性,作为可再生能量和方法,将机械能从雨滴转化为电能的方法。在该表面的每个压力平均可以生成每种压电1伏。在串联连接中使用更多压电将为负载提供更多功率。来自压电产生的交流电流(AC)的输出,然后使用整流器电路转换为直流电流(DC)。该项目还包括用于生成的电源存储的电力库。关键字:降雨能量,微水涡轮机,直流电动机和压电传感器。
作为驱动力,诱导物理或化学电子转移过程来促进催化。[1–3] 自从机械催化被首次提出以来,[4] 它已被广泛应用于材料合成、[5] 水处理、[6] 回收或其他自由基相关化学等各个领域。[7] 近年来,利用压电/热电/铁电半导体的表面极化电荷,压电催化是一种新型的机械催化,已见报道,可通过机械刺激直接实现电化学反应。[8] 变形的压电/热电/铁电半导体的极化可以增强自由电荷和束缚电荷的能量,促进载流子的分离,增加参与催化反应的激发电荷的寿命。 [9,10] 压电催化不仅可以利用环境中的机械振动(如风或波浪),还可以利用工业系统中的冗余振动进行催化。因此,压电催化被认为是一种有前途的绿色机械催化。然而,压电、热电或铁电效应仅表现在具有非中心对称结构的压电材料中,例如纤锌矿结构,[11] 这极大地
摘要 人们对利用超声 (US) 换能器进行非侵入性神经调节治疗,包括低强度经颅聚焦超声刺激 (tFUS) 的兴趣迅速增长。用于 tFUS 的最广泛展示的超声换能器是体压电换能器或电容式微机械换能器 (CMUT),它们需要高压激励才能工作。为了推动超声换能器向小型便携式设备的发展,以便大规模安全地进行 tFUS,人们对具有光束聚焦和控制能力的低压超声换能器阵列很感兴趣。这项工作介绍了使用 1.5 µ m 厚的 Pb(Zr 0.52 Ti 0.48)O3 薄膜(掺杂 2 mol% Nb)的 32 元件相控阵压电微机械超声换能器 (PMUT) 的设计方法、制造和特性。电极/压电/电极堆栈沉积在绝缘体上硅 (SOI) 晶片上,硅器件层厚度为 2 µ m,用作弯曲模式振动的被动弹性层。制造的 32 元件 PMUT 的中心频率为 1.4 MHz。演示了超声波束聚焦和控制(通过波束成形),其中阵列由 14.6 V 方波单极脉冲驱动。PMUT 在焦距为 20 mm 时产生的最大峰峰值聚焦声压输出为 0.44 MPa,轴向和横向分辨率分别为 9.2 mm 和 1 mm。最大压力相当于 1.29 W/cm 2 的空间峰值脉冲平均强度,适用于 tFUS 应用。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
1因斯布鲁克大学,奥地利6020 Innsbruck; rainer.p fluger@uibk.ac.at 2 Eurac Research,39100 Bozen,意大利; Alexandra.troi@eurac.edu(A.T。); daniel.herrera@eurac.edu(d.h.-a.) 3丹麦哥本哈根SV 2450的Aalborg University建筑环境系; ket@build.aau.dk(k.e.t。 ); jro@build.aau.dk(J.R.)4 Izmir理工学院,35430 - Izmir,土耳其; zeynepdurmus@iyte.edu.tr(Z.D.A. ); guldengokcen@iyte.edu.tr(G.G.A.) 5 Arch+更多ZT GmbH,9220 Velden AmWörthersee,奥地利; Arch@archmore.cc 6 Cerema,BPE Project团队,46,rue stthébald,F-38080 L'Isle D'Abeau,法国; Gaelle.guyot@cerema.fr 7 Savoie Mont Blanc,CNRS,Locie,73000ChambéRy,法国8德雷克塞尔大学,费城,宾夕法尼亚州19104,美国; dhc38@drexel.edu *通信:Alexander.rieser@uibk.ac.at;电话。 : +43-512-507-636211因斯布鲁克大学,奥地利6020 Innsbruck; rainer.p fluger@uibk.ac.at 2 Eurac Research,39100 Bozen,意大利; Alexandra.troi@eurac.edu(A.T。); daniel.herrera@eurac.edu(d.h.-a.)3丹麦哥本哈根SV 2450的Aalborg University建筑环境系; ket@build.aau.dk(k.e.t。 ); jro@build.aau.dk(J.R.)4 Izmir理工学院,35430 - Izmir,土耳其; zeynepdurmus@iyte.edu.tr(Z.D.A. ); guldengokcen@iyte.edu.tr(G.G.A.) 5 Arch+更多ZT GmbH,9220 Velden AmWörthersee,奥地利; Arch@archmore.cc 6 Cerema,BPE Project团队,46,rue stthébald,F-38080 L'Isle D'Abeau,法国; Gaelle.guyot@cerema.fr 7 Savoie Mont Blanc,CNRS,Locie,73000ChambéRy,法国8德雷克塞尔大学,费城,宾夕法尼亚州19104,美国; dhc38@drexel.edu *通信:Alexander.rieser@uibk.ac.at;电话。 : +43-512-507-636213丹麦哥本哈根SV 2450的Aalborg University建筑环境系; ket@build.aau.dk(k.e.t。); jro@build.aau.dk(J.R.)4 Izmir理工学院,35430 - Izmir,土耳其; zeynepdurmus@iyte.edu.tr(Z.D.A.); guldengokcen@iyte.edu.tr(G.G.A.)5 Arch+更多ZT GmbH,9220 Velden AmWörthersee,奥地利; Arch@archmore.cc 6 Cerema,BPE Project团队,46,rue stthébald,F-38080 L'Isle D'Abeau,法国; Gaelle.guyot@cerema.fr 7 Savoie Mont Blanc,CNRS,Locie,73000ChambéRy,法国8德雷克塞尔大学,费城,宾夕法尼亚州19104,美国; dhc38@drexel.edu *通信:Alexander.rieser@uibk.ac.at;电话。: +43-512-507-63621
使用弯曲压电盘的 Tonpilz 压电换能器的频率特性估计 Applied Acoustics Elsevier 第 72 卷,第 12 期,2011 年 12 月 Tomonao Okuyama Kenji Saijo
摘要:在我们最近发表的论文中(Y.-Y.Wang等人,高性能lanio 3-缓冲,(001)面向的PZT PIDZOELECTRICRICRICRICFMS集成在(111)Si,Appl。物理。Lett。 121,182902,2022),高度(001)面向的PZT纤维,据报道,在(111)SI底物上制备了较大的横向压电系数E 31。 这项工作对压电微型机电系统(Piezo-MEMS)的发展是有益的,因为(111)SI的各向同性机械性能和理想的蚀刻特性。 然而,在这些PZT薄膜中实现高压电性能的基本机制尚未彻底分析。 在这项工作中,我们在微观结构(XRD,SEM和TEM)中提供了完整的数据集,以及对这些薄膜的电气性能(铁电,介电和压电),典型的退火时间为2、5、10和15分钟。 通过数据分析,我们揭示了调整这些PZTFIM的电性能的竞争效果,即,消除时间增加了残留的PBO和纳米孔的增殖。 后者被证明是压电性能恶化的主导因素。 因此,最短退火时间为2分钟的PZT纤维显示出最大的E 31,F压电系数。 此外,可以通过纤维形态变化来解释性能降解10分钟,这不仅涉及晶粒形状的变化,而且还涉及大量纳米孔在其底部界面附近的产生。Lett。121,182902,2022),高度(001)面向的PZT纤维,据报道,在(111)SI底物上制备了较大的横向压电系数E 31。这项工作对压电微型机电系统(Piezo-MEMS)的发展是有益的,因为(111)SI的各向同性机械性能和理想的蚀刻特性。然而,在这些PZT薄膜中实现高压电性能的基本机制尚未彻底分析。在这项工作中,我们在微观结构(XRD,SEM和TEM)中提供了完整的数据集,以及对这些薄膜的电气性能(铁电,介电和压电),典型的退火时间为2、5、10和15分钟。通过数据分析,我们揭示了调整这些PZTFIM的电性能的竞争效果,即,消除时间增加了残留的PBO和纳米孔的增殖。后者被证明是压电性能恶化的主导因素。因此,最短退火时间为2分钟的PZT纤维显示出最大的E 31,F压电系数。此外,可以通过纤维形态变化来解释性能降解10分钟,这不仅涉及晶粒形状的变化,而且还涉及大量纳米孔在其底部界面附近的产生。