这个项目下的学生要感谢那些为完成这项研究的贡献的人。首先,我们要感谢德里大学的Sri Venkateswara学院给予我们这个学习机会,这帮助我们开发了宝贵的毅力,团队合作,团队合作,韧性,合作,最重要的是无尽的知识追求。第二,我们要向莫妮卡·梅纳(Monika Meena)女士表示深切而真诚的感谢,以提供宝贵的指导,支持,建议和规定,从而有助于这项研究的完成和成功。在她的指导下工作和学习是一种极大的荣幸和荣幸。我们还要对父母的无休止的爱,祈祷和支持表示最大的感谢。如果没有任何时间的支持,这是不可能的。非常感谢全能的上帝给了我们进行这项研究的力量,知识,能力和机会。最后,我们感谢所有支持我们直接或间接完成研究工作的人。
摘要 薄膜技术因其多种工业用途而具有吸引力,正在工程学、化学、物理学和材料科学等许多领域得到研究。近年来,随着可再生能源的开发前景,薄膜市场,尤其是光伏领域的研究得到了显著发展,薄膜市场迅速增长。然而,这并不排除其他领域,如半导体集成电路、保护、光学或简单的装饰涂层。上面没有提到的一个领域是新兴的能量收集领域,即捕获和积累来自环境中可用的替代能源的所有能量;第一步是寻找能够将环境能量转换为电能的设备。多年来,人们一直在研究实现这种转换的一种可能的解决方案,那就是压电薄膜,本论文的主题就是压电薄膜的实现和一些初步测量。所采用的技术是生产薄膜最通用的技术之一,即在反应环境中的磁控管配置中进行溅射,该技术快速且能适应各种要求,以获得具有所需特性的薄膜。沉积的压电材料是铝基板上的氮化铝。
压电材料由各种类型的晶体、聚合物、陶瓷和复合材料组成,它们用于需要电场和机械应变耦合的众多应用中。本期特刊的主要目的是收集当前有助于利用压电技术推动工程应用发展的研究成果。感兴趣的具体主题包括但不限于:使用压电材料和设备进行能量收集、传感器和执行器、压电复合材料、压电材料的设计/制造、压电材料的建模、压电纳米材料、压电复合材料的特性、压电梁和板的振动分析、压电设备在工程和医学应用中的用途、材料中的压电性以及使用压电现象和/或设备的任何其他高级研究或应用。我们期待您的投稿。
高品质因数、低功耗、简单的设计技术以及与集成电路 (IC) 主要标准制造工艺的兼容性要求使可调谐压电谐振器成为第五代电信 (5G) 和物联网 (IoT) 新技术的合适选择。本文提出了压电效应的非线性状态方程。通过这些方程,我们可以推断出哪些材料可用于需要磁滞行为或谐振频率可调性的应用;此外,还显示了哪些晶体具有与每个应用领域兼容的非线性张量对称性。提出了一种用于可调压电装置的新模型,其中考虑了电压调谐的影响。最后,介绍了三种设计和实现压电材料非线性行为以调谐装置的不同方法。
1 马尔马拉大学,职业技术科学学校,电力与能源系,伊斯坦布尔,土耳其 2 本科生(副学士学位)* 通讯作者 电子邮件:ykaratepe@marmara.edu.tr 要点 本文介绍了有关使用压电材料从可再生能源中获取能量的信息,以及它们在不久的将来的可取性,特别参考了它们的性能特征。 通过检查文献中报告的研究,得出结论,在可再生能源应用中使用压电材料具有降低成本以及提供更清洁的能源生产的潜力。 本文对文章中数据和缺陷的细致审查被认为可以为研究人员研究这一主题提供指导。 ARTICLEINFO 收到日期:2021 年 10 月 10 日 接受日期:2021 年 11 月 28 日 发表日期:2021 年 12 月 15 日 关键词:能量收集、可再生能源、压电、压电材料
1 工程管理系,工程学院,苏丹王子大学,邮政信箱 66833,利雅得 11586,沙特阿拉伯;aaabid@psu.edu.sa(AA);ymansour@psu.edu.sa(YEI) 2 电气与电子工程系,NMAM 技术学院,Nitte,Karkala Taluk,卡纳塔克邦 574110,印度 3 机械工程系,工程学院,马来西亚国际伊斯兰大学,邮政信箱 10,吉隆坡 50728,马来西亚;asraar.anjum@gmail.com(AA);meftah@iium.edu.my(MH);zayan_mohammed@yahoo.co.in(JMZ) 4 制造与材料工程系,工程学院,马来西亚国际伊斯兰大学,邮政信箱 10,吉隆坡 50728,马来西亚; mirbisma5555@gmail.com 5 马来西亚国际伊斯兰大学工程学院电气与计算机工程系,马来西亚吉隆坡 50728,邮政信箱 10;nagmaparveen1192@gmail.com * 通信地址:mararkeri@nitte.edu.in
1 米尼奥大学物理中心,4710-057,布拉加,葡萄牙 2 米尼奥大学 IB-S 可持续发展科学与创新研究所,4710-057,布拉加,葡萄牙 3 米尼奥大学聚合物与复合材料研究所 IPC/I3N,4800-058 吉马良斯,葡萄牙 4 BCMaterials,巴斯克材料、应用与纳米结构中心,HU 科技园,48940 Leioa,西班牙 5 IKERBASQUE,巴斯克科学基金会,48013,毕尔巴鄂,西班牙
摘要:高性能、低功耗至零功耗的压电传感器满足了小尺寸、低功耗柔性微电子系统日益增长的需求,在机器人与假肢、可穿戴设备、电子皮肤等领域有着广阔的应用前景。本文介绍了压电传感器的发展历程、应用场景和典型案例,总结了提高压电传感器性能的几种策略:(1)材料创新:从压电半导体材料、无机压电陶瓷材料、有机压电聚合物、纳米复合材料,到新兴的、有前景的分子铁电材料。(2)在压电材料表面设计微结构,增大压电材料在作用力下的接触面积。(3)在传统压电材料中添加化学元素、石墨烯等掺杂剂。(4)开发基于压电电子效应的压电晶体管。此外,还讨论了每种策略的原理、优缺点和挑战。此外,还预测了压电传感器的前景和发展方向。未来,电子传感器需要嵌入微电子系统中才能充分发挥作用。因此,本文最后提出了一种基于外围电路的提高压电传感器性能的策略。
使用压电设备从空调冷凝器中收集能量 摘要 使用校园内的几台空调机组来确定空调冷凝器机组中潜在的废能来源,并设计了能量收集方法。这些能量收集方法称为使用压电设备的振动和气流驱动能量收集。目标是从排气流中产生电能(类似于喷气发动机的加力燃烧器,但规模要小得多)。对于压电设备,想法是使设备振动以产生电能。工程技术课程的学生和教师研究了空调机组,以确定潜在的废能来源。根据季节、振动水平和冷凝器的排气扇流量进行测量以确定运行时间。进行了测量,并与计算出的从冷凝器中获取的潜在功率进行了比较。这个本科研究项目是全校范围内为促进节能和研究使用清洁可再生能源而开展的几项工作之一。简介 压电性一词源于希腊语 piezein ,意思是挤压和按压。直接效应和逆效应是两种压电效应。在直接效应中,电荷由机械应力产生。在逆效应中,施加电场会产生机械运动。压电能量收集利用直接效应,k p 、k 33 、d 33 、d 31 、g 33 是压电材料特性的特征。k 因子,称为压电耦合因子,是方便直接测量机电效应整体强度的典型方法 [1-4]。压电能量收集是一种通过应变压电材料将机械能转化为电能的方法 [5]。压电材料的应变或变形会导致整个设备中的电荷分离,产生电场并导致与施加的应力成比例的电压降。振荡系统通常是悬臂梁结构,在杠杆的未连接端有一个质量,因为它为给定的输入力提供更高的应变 [6]。产生的电压随时间和应变而变化,平均而言有效地产生不规则的交流信号。压电能量转换产生的电压和功率密度水平比电磁系统相对较高。此外,压电效应能够从机械应力中产生晶体和某些类型陶瓷等元素的电势 [7]。如果压电材料未短路,则施加的机械应力会在材料上产生电压。用于清除振动能量的最常见设备类型是悬臂压电设备,它通过弯曲、摇晃和变形来发电 [8]。有许多基于压电材料的应用,例如电动打火机。在这个系统中,按下按钮会导致弹簧锤击中压电晶体,产生的高电压会跨越小火花间隙,从而点燃可燃气体。按照同样的想法,便携式打火机用于点燃燃气烤架和炉灶,以及各种
-压电材料(铁电性、压电性、电致伸缩性、热电性) -光电材料(光电效应、光电应用、电光应用) -磁/电活性材料(磁场和电场的效应、磁/电活性材料的分类、磁/电活性材料的应用)