在过去的二十年中,已经出现了几种微机械传感器。其中,压力传感器占据了近 60% 的市场。图 1.10 (a) 显示了压阻式压力传感器芯片的示意等距剖面图。在这里,我们可以看到集成在微机械硅膜片上的四个压敏电阻(压电电阻)。微机械加速度计是另一种受到航空航天、汽车和生物医学行业广泛关注的设备。图 1.10 (b) 显示了这种设备的示意横截面图。地震质量响应加速度并偏转,从而导致质量和固定电极之间的电容发生变化。电容的变化是位移的量度,而位移又取决于加速度。
ARC LAB1249 - 汽车研究中心燃烧压力传感器 1 件 ARC LAB1248 - 自动驾驶汽车实验室直流电子负载 1 件 ARC LAB1248 - 自动驾驶汽车实验室摄像头 - BASLER TOF 摄像头 1 件 ARC LAB1249 - 汽车研究中心压电电阻压力传感器 1 件 ARC LAB1248 - 自动驾驶汽车实验室摄像头传感器 - Sekonix 5 件 ARC LAB1248 - 自动驾驶汽车实验室摄像头传感器 - Sekonix 5 件 ARC LAB1249 - 汽车研究中心涡流测功机 1 件 ARC LAB1248 - 自动驾驶汽车实验室小型地面机器人 1 件 ARC LAB1249 - 汽车研究中心压力传感器 1 件 ARC LAB1248 - 自动驾驶汽车实验室 NVIDIA AGX XAVIER 开发套件 2 件 ARC LAB1249 - 汽车研究中心带双缸柴油发动机的基础框架 1 件 ARC LAB1248 - 自动驾驶汽车实验室微孔气体扩散层 20 件 ARC LAB1249 - 汽车研究中心带直流发电机设置的变速发动机 1 件 ARC LAB1249 - 汽车研究中心 AVL 带 LED 遥控器的烟雾计 1 件 ARC LAB1249 - 汽车研究中心发动机组件 1 件 ARC LAB1249 - 汽车研究中心旋转式流量计 1 件 ARC LAB1249 - 汽车研究中心阴极射线示波器 1 件 ARC LAB1249 - 汽车研究中心铅酸电池 12 伏 100 AH 3 件
啮齿动物中的一个有趣的共同特征是它们的晶须,他们可以积极地移动以感知环境周围的接触。这些晶须具有各种功能,例如从对象中提取轮廓,为机器人提供位置估算,识别纹理特征以及积极避免碰撞。基本上,它为低计算成本的机器人提供了一种非侵入性的触觉感知,尤其是在非结构化,混乱和视力障碍的环境中有益的。实现实时的被动接触估计并确保强大的机械设计对于这种传感器至关重要。以前的方法通常依赖于6轴力/扭矩传感器[1],压电电阻[2]或其他与力相关的传感器。但是,这些解决方案通常是庞大而挑战的规模。相比之下,磁透射的晶须[3]提供了更紧凑且易于集成的解决方案,能够用平行的晶须形成阵列。尽管如此,基于磁通量在根周围的磁通量变化而准确地对接触运动进行建模并沿晶须轴进行定位,这在很大程度上取决于强大的设计。我们已经构建了一种产生提示联系估计的方法,但是由于缺乏对物体形状的先验知识,基于切向接触状态估计的当前方法仍然遭受动态误差[4]。