第 1 章 简介 1 1.1 简介 1 1.2 定子绕组绝缘系统 3 1.2.1 线束和匝绝缘 4 1.2.2 接地壁绝缘系统 5 1.2.3 应力分级系统 7 1.3 PWM-VSC 波形应力 8 1.3.1 非线性电压分布引起的应力 10 1.3.2 电缆长度的影响 12 1.3.3 局部放电 (PD) 侵蚀 13 1.3.4 空间电荷的后果 14 1.4 文献综述 18 1.4.1 电磁线涂层中的空间电荷积累、捕获和电荷注入 18 1.4.2 纳米填充电磁线的性能 20 1.4.3 建模 22 1.4.4 接地壁绝缘的评估 23 1.5 目的本论文的主要内容和论文组织 25 第 2 章 材料、实验装置和建模 27 2.1 简介 27 2.2 材料 27 2.2.1 磁线基材 27 2.2.2 磁线外涂层纳米填料 28 2.2.3 绝缘试验匝间试样 31 2.2.4 接地壁试验样品的制备 34 2.3 统计分析 35 2.3.1 威布尔分析 37 2.4 具有匝间应力的系统建模 38 2.4.1 有限元法 (FEM) 39 2.5 固体电介质中存储电荷的表征 40 2.5.1 热刺激去极化电流 (TSDC) 方法 41 2.5.2 存储电荷和捕获能级 43 2.6 实验装置43 2.6.1 PD 测量 44 2.6.2 使用红外摄像机进行温度测量 46 2.6.3 TSDC 测量 48 2.6.4 脉冲老化测试电路 50 2.6.5 用于表面粗糙度测量的 SEM 和图像工具软件 55
1.以 ZL6205 为例,先简单介绍一下 ........................................................................ 1 2.直接上拉使能 ........................................................................................................... 2 3.电阻分压使能 ........................................................................................................... 3 4.其他使能应用 ........................................................................................................... 4 5.免责声明 ................................................................................................................... 6
来自 LLNL 的科学家团队描述了一种高精度干涉仪系统,该系统是新开发的,用于测量金刚石压砧中的折射率及其色散的压力依赖性。阅读更多 科学家团队对直接驱动金球实验进行了分析,以测试惯性约束聚变和高能量密度建模中使用的热传输模型。阅读更多 来自 LLNL 和激光能量学实验室的科学家致力于改进 NIF 上的极性直接驱动中子源,NIF 是世界上能量最高的激光器。阅读更多 由 LLNL 和科罗拉多矿业学院领导的跨学科研究团队展示了在高速率量子传感器中使用核衰变寻找惰性中微子的威力。这些发现是此类测量的首次。阅读更多 根据一份新的谅解备忘录,LLNL、IBM 和 Red Hat 的研究人员旨在通过将 LLNL 的 Flux 调度框架与 Red Hat OpenShift 集成来支持下一代工作负载,从而使更传统的高性能计算作业能够利用云和容器技术。阅读更多
该表基于 2013 年 1 月 1 日至 2022 年 9 月 29 日期间的 FracFocus 数据,逐县显示了德克萨斯州油气公司注入 PTFE 用于水力压裂、被 EPA 确定为 PFAS 或使用至少一种氟表面活性剂或潜在氟表面活性剂进行水力压裂的油井数量。在此表中,术语“氟表面活性剂”涵盖“非离子氟表面活性剂”的公开用途,而术语“潜在氟表面活性剂”涵盖“氟烷基醇取代聚乙二醇”的公开用途,被 EPA 确定为 PFAS。两位化学家将非离子氟表面活性剂鉴定为 PFAS 或可能降解为 PFAS 的前体。第三位化学家将它们鉴定为可能的 PFAS,一位委员会认证的毒理学家将它们鉴定为潜在的 PFAS。总重量数字反映了我们有足够信息来计算化学品重量的所有记录的总和。
条件下,因此缺乏身体准备或对某些症状的清晰感知会导致身体衰竭,甚至死亡。7,8 尽管技术发展为人体工程学设计、软件、硬件和空中交通管制技术带来了进步,对飞行安全产生了积极影响,但人为因素的存在仍然是航空事故的主要原因。9–11 空间定向障碍是很大比例军事航空事故的重要因素。虽然先前的研究分析了事故统计数据,但它们往往存在方法上的缺陷,导致对民用和军用飞机事故的真正原因得出的结论值得怀疑。12,13 特技飞行可以显著改变飞行员的空间定向能力。通过这种方式,应该研究与空中活动相关的人体生理固有因素;颅内压 (ICP) 是一个重要的临床变量,医生和航空航天专业人员仍然无法获得。ICP 是颅腔内的压力。三种成分填充该空间:血液、脑脊液和脑组织,其中一种或多种成分的改变会导致颅内压的变化,14 例如动脉血压的波动。
安川电机的质量始终引领着驱动器行业,每一代产品都建立在上一代产品的基础上。上一代中压产品 (MV1S) 的现场平均无故障时间 (MTBF) 已证实超过 300,000 小时。MV1000 建立在上一代 MV 驱动器的成功基础之上,采用同样严格的设计规则和质量控制/质量保证 (QC/QA) 实践。MV1000 的组件数量也减少了。随着现场使用单位和小时数的增加,MV1000 将超越上一代 MV 驱动器已经非常出色的性能。
烧结的银(Ag)是高温电子应用最有希望的互连材料之一,因为它具有承受苛刻和极端环境的潜力。本文研究了在200°C,250°C,275°C和300°C下在聚合物粘合剂粘合剂中无压烧结下Ag颗粒的微观结构演变,持续2小时。通过在不同烧结温度下对样品上的两维离子束(FIB)观察到的晶粒,颗粒和颈部生长与原子运动和降低表面能的降低有关,这是烧结的驱动力。在这项研究中,聚合物粘合剂中的无压力烧结过程成功地将散射的Ag颗粒转化为紧凑而密集的Ag,在300°C下连接。在300°C下获得的电导率值为5.2E+05 s/cm,这是评估样品中最高的。
当同步整流管完全开启后, VDS 两端压降完全跟 随次级电流 Is 。随着次级续流电流的减小 VDS 电压升 高,当 VDS 电压增大到 -30mV 时, Gate 驱动电路的 上管供电被关断 , 驱动电压随内部电阻及漏电流开始缓 慢降低;当 VDS 电压增大到 -20mV 时, Gate 驱动电 压会被钳位在 3.3V 左右。如果 VDS 电压增大到 -1mV 时, WS2260C 会在 25ns 的时间内快速将 GATE 电压 拉到 0V 。同时,关断屏蔽时间开始计时,此期间 GATE 保持低电平。直到 VDS 电压大于 2V ,退出关断屏蔽 计时。
摘要:设计并测试了一种用于现场测量动态充气机翼上下表面内外压差的仪器系统,揭示了充气翼型的空气动力学特性的重要见解。风洞试验证明了低压差读数在 1.0–120 Pa 范围内的全部能力,覆盖 3 至 10 m/s 的速度,攻角从 − 20 到 +25 ◦。读数稳定,在运行飞行范围内的变化系数为 2% 至 7%。实验数据证实了底部前缘再循环气泡的出现,与低雷诺数状态和进气口的存在有关。它支持基于局部压力差的空气动力学特性新方法的提议,该方法考虑了受限的气流结构并提供与实际观察相符的升力估计。结果也与之前按照不同策略获得的数据兼容,并被证明可以有效地参数化膨胀和失速现象。总体而言,该仪器可以直接用作飞行测试设备,并且可以进一步转换为崩溃警报和预防系统。