抽象的传统超高性能混凝土(UHPC)具有卓越的开发潜力。然而,在整个水泥制造过程中产生了大量的CO 2,这与当前在全球范围内降低排放和保存能量的趋势相反,从而限制了UHPC的进一步发展。考虑到气候变化和可持续性问题,无水泥,环保,碱活化的UHPC(AA-UHPC)材料最近受到了广泛关注。在旨在降低实验工具和人工成本的高级预测技术的出现之后,本研究提供了基于机器学习(ML)算法的不同方法的比较研究,以提出一种基于活跃的学习ML模型(AL-STAKED ML),以预测AA-UHPC的压缩强度。收集了包含284个实验数据集和18个输入参数的数据丰富的框架。对可能影响AA-UHPC抗压强度的输入特征的重要性进行了全面评估。结果证实,在本研究中已经测试过的不同一般实验标本的堆叠式ML-3可用于98.9%的AL-3。主动学习可以提高精度高达4.1%,并进一步增强堆叠的ML模型。此外,通过实验测试引入并验证了图形用户界面(GUI),以促进可比的前瞻性研究和预测。
我们研究了外部磁场下双自旋模型中的热超密集编码。详细介绍了它对磁场、自旋压缩强度和温度的依赖性。我们现在的主要目标是研究如何在磁场、自旋压缩强度和温度存在的情况下提高热超密集编码容量。结果表明,通过设置输入量子关联的值,密集编码趋于有效值。我们进行这项研究的最重要动机是检查超量子不和谐 (SQD) 的热性质与密集编码之间的关系。结果表明,我们通道上 SQD 的热性质使我们能够确定系统何时以及在什么条件下适合有效的密集编码。我们的建议可能导致该方案对量子信息处理有效。
这些长度约0.5 µm的针状晶体嵌入氧化氢玻璃基质中。一起,这些材料成分结合在一起,形成了强大的增强,高密度的恢复材料。CEREC TESSERA块的致密晶体组成是其高强度的关键,并且实际上消除了微裂纹的存在和随后的裂纹传播。此处的原理类似于钢钢筋混凝土:在CEREC TESSERA块中,DiSilicate锂提供了压缩强度,而新形成的Virgilite则增加了预压应力。
1。混凝土基地:4英寸(100毫米)高,(埃文斯顿:Sheridan Rd的东部6英寸)加固,边缘倒角。,除非另有说明,否则将底部不超过3英寸(75毫米)的最大设备尺寸。2。放置并安全的锚固设备。使用受支持的设备制造商的设置图,模板,图表,说明和指示,并提供了要嵌入的物品。3。根据锚螺栓制造商的书面说明安装锚螺栓。4。使用3000-PSI(20.7-MPA)28天压缩强度混凝土和钢筋,如Disecon 03部分所示。
机械挖掘中最重要的问题之一是预测TBM渗透率。了解渗透率的影响的因素很重要,这可以更准确地估算停止和发掘时间和运营成本。在这项研究中,输入和输出参数,包括单轴压缩强度(UCS),巴西拉伸强度(BTS),峰斜率指数(PSI),无力平面(DPW)之间的距离,α角度(DPW),α角度和渗透率(ROP)(ROP)(ROP)(ROP)(M/HR)在使用Queens Waternel tunnel tunder tunder tunder tunder tunnel tunnel tunnel tunnel tunnel。 (SVM)方法为R。= 0.9678,RMSE = 0.064778,根据结果,支持向量机(SVM)具有有效性,并且具有很高的精度。关键字:TBM,渗透率,支持向量机(SVM)。
机械性能 公制 英制 注释 硬度,肖氏 D 70 70 ASTM D2240 拉伸强度 31.7 MPa 4600 psi ASTM D638 65°C (150°F) 时的拉伸强度 2.76 MPa 400 psi ASTM D638 断裂伸长率 400 % 400 % ASTM D638 屈服伸长率 12 % 12 % ASTM D638 拉伸模量 1.38 GPa 200 ksi ASTM D638 弯曲强度 31.7 MPa 4600 psi ASTM D790 弯曲模量 1.20 GPa 174 ksi ASTM D790 压缩强度 31.7 MPa 4600 psi 10% 变形; ASTM D695 压缩模量 0.689 GPa 100 ksi ASTM D695 缺口悬臂梁冲击强度 0.694 J/cm 1.30 ft-lb/in ASTM D256 A 型动态摩擦系数 0.20 0.20 干燥状态下与钢表面接触;QTM55007
与其他金属和复合材料相比,铝具有制造工艺简单、耐腐蚀、重量轻和成本低等优点[7]。设计飞机结构的重要参数包括抗疲劳性、密度、断裂韧性、强度和耐腐蚀性[7]。此外,在静态重量下受到拉伸时,上侧会产生压缩载荷,而下侧则相反;因此,在飞行过程中需要仔细优化拉伸和压缩强度[7]。因此,铝作为最轻的金属,可以轻松取代其他金属并承受由于飞机大型化而增加的机翼压力载荷[8]。在这方面,航空航天工业使用不同类型的铝合金,其中一些在表2中给出。然而,常见的类别大多来自2xxx和7xxx系列[9]。2000系列合金具有良好的抗疲劳裂纹扩展能力并拥有卓越的损伤容限。因此,它们通常用于飞机的机身蒙皮和下机翼,其中断裂韧性(即抗裂纹扩展)是一个重要的设计参数 [6] 。 Al2024-T3 是机身结构中最常用的 2000 系列合金 [10] 。 7000 系列通常用于上机翼蒙皮,其中强度是主要的设计因素 [6] 。 Al7075-T6 是
由于其出色的强度,对腐蚀,可负担性和易于制造的耐药性,铝及其合金被广泛用于许多不同的工程目的。铝及其合金由于负担能力和易于制造而广泛用于许多工程领域。[1-3]。硬度刚度,压缩强度和强抗拉伸能力的程度是铝合金混合纳米复合材料(AAHNCS)的一些所需特征。与纯合金相比,这些材料表现出更大的耐磨性。这些材料用于多个行业的许多结构应用,例如汽车,飞机和海洋。可以在卡车框架,机车教练,建筑物,塔楼,陆军和工业桥,航空航天利用和造船厂的活动中找到AA 6061的重型结构用途。在其极好的电导率,缺乏密度,高强度和对腐蚀性的抵抗力以及更大的能力以及机器的能力。AA 6061是最常用的矩阵材料[1,4-5]。金属基质复合材料(MMC)最近获得了丰富的焦点,因为它们具有出色的机械品质,它们具有耐磨性和机械强度。空间结构,滑动电触点,
生物聚合物是有前途的材料,如果其低机械和生物活性特性都得到改善,则可以在骨骼替代应用中广泛使用。在这方面,这项研究的主要目的是改善机械和生物学特性,除了改善光学和电气特性以适合于裂缝愈合目的使用。因此,在这项研究中,将一批聚(乙烯基醇; PVA)和生物学提取的羟基磷灰石(BHA)机械地以(70:30 vol。%)为准。然后,将氧化镁(MGO)和碳化硅(SIC)添加到该批次中,其体积百分比不同,在120°C时加热。测量了物理,机械,光学和电气性能。此外,通过将它们浸入模拟的体液(SBF)中,然后通过扫描电子显微镜(SEM)进行检查,从而评估了这些样品在其表面上形成磷灰石层的能力。获得的结果澄清说,由于这些添加剂的添加剂,改善了微度,压缩强度,Young的模量,纵向模量,纵向模量,大量模量和剪切模量的机械性能。也观察到,BHA和MGO纳米颗粒的存在增强了准备样品的生物活性,光学和电性能。获得的结果令人鼓舞,这项研究的目的已成功实现。