© 2024 作者。开放存取。本文根据知识共享署名 4.0 国际许可协议获得许可,允许以任何媒介或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的致谢中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。
本研究主要集中于使用量子理论对低温 InP HEMT 高频电路进行分析,以发现晶体管非线性如何影响所产生模式的量子关联。首先,推导出电路的总哈密顿量,并使用海森堡-朗之万方程检查所贡献运动的动力学方程。利用非线性哈密顿量,将一些组件附加到 InP HEMT 的本征内部电路,以充分解决电路特性。附加的组件是由于非线性效应而产生的。结果,理论计算表明,电路中产生的状态是混合的,没有产生纯态。因此,修改后的电路产生双模压缩热态,这意味着可以专注于计算高斯量子不和谐来评估量子关联。还发现非线性因素(称为电路中的非线性分量)可以强烈影响改变量子不和谐的压缩热态。最后,作为主要观点,得出结论,虽然可以通过设计非线性分量来增强模式之间的量子关联;然而,由于 InP HEMT 的运行温度为 4.2 K,因此实现大于 1 的量子不和谐、纠缠微波光子似乎是一项具有挑战性的任务。
b"其中 | z \xe2\x9f\xa9 = D ( z ) | 0 \xe2\x9f\xa9 是一个与真空态 | 0 \xe2\x9f\xa9 相关的相干态,通过位移算子 D ( z ) = exp \xe2\x88\x92 za \xe2\x80\xa0 \xe2\x88\x92 \xc2\xaf za 表示 Heisenberg\xe2\x80\x93Weyl 代数 [ a , a \xe2\x80\xa0 ] = 1 [ 6 ]。我们注意到,该提议看似简单,但代价是“字母”的非正交性,即 tr ( \xcf\x81 0 \xcf\x81 1 ) \xcc\xb8 = 0,导致它们的可区分性受到限制。由于相干态不需要非线性介质来产生,因此与早期利用压缩态 [ 7 ] 且要求“硬”非线性相比,使用相干态似乎更具优势 [ 3 ]。然而,实验技术的最新进展可能会扭转这一趋势,至少在超越标准相干态变得有利的情况下。以薛定谔猫态作为正交字母表状态的候选者为例 [ 1 ]。这项研究的目的是给出一个由 Gazeau\xe2\x80\x93Klauder 相干态组成的字母表候选者的例子 [ 8 ]。我们分析了与配备了克尔介质典型的多项式非线性的振荡器相关的 Gazeau\xe2\x80\x93Klauder 状态的二进制通信。已经针对各种量子系统研究了 Gazeau\xe2\x80\x93Klauder 相干态:单模”
b"其中 | z \xe2\x9f\xa9 = D ( z ) | 0 \xe2\x9f\xa9 是一个与真空态 | 0 \xe2\x9f\xa9 相关的相干态,通过位移算子 D ( z ) = exp \xe2\x88\x92 za \xe2\x80\xa0 \xe2\x88\x92 \xc2\xaf za 表示 Heisenberg\xe2\x80\x93Weyl 代数 [ a , a \xe2\x80\xa0 ] = 1 [ 6 ]。我们注意到,该提议看似简单,但代价是“字母”的非正交性,即 tr ( \xcf\x81 0 \xcf\x81 1 ) \xcc\xb8 = 0,导致它们的可区分性受到限制。由于相干态不需要非线性介质来产生,因此与早期利用压缩态 [ 7 ] 且要求“硬”非线性相比,使用相干态似乎更具优势 [ 3 ]。然而,实验技术的最新进展可能会扭转这一趋势,至少在超越标准相干态变得有利的情况下。以薛定谔猫态作为正交字母表状态的候选者为例 [ 1 ]。这项研究的目的是给出一个由 Gazeau\xe2\x80\x93Klauder 相干态组成的字母表候选者的例子 [ 8 ]。我们分析了与配备了克尔介质典型的多项式非线性的振荡器相关的 Gazeau\xe2\x80\x93Klauder 状态的二元通信。已经针对各种量子系统研究了 Gazeau\xe2\x80\x93Klauder 相干态:单模”