获取独家产品信息,尽享促销优惠!立即订阅,不容错过
* 限···时··优惠
人类大脑利用尖峰进行信息传输,并动态地重组其网络结构,以提高能源效率和认知能力的整个生命周期。从这种基于尖峰的计算中汲取灵感,已开发出尖峰神经网络(SNN)来构建模仿该效率的事件驱动的模型。尽管有这些进步,但在训练和推断期间,深SNN仍遭受过度参数化,与大脑自我组织的能力形成鲜明对比。此外,由于静态修剪比率保持最佳的修剪水平,现有的稀疏SNN受到挑战,导致下降或过度修剪。在本文中,我们为深SNN提出了一种新型的两阶段动态结构学习方法,旨在从头开始进行有效的稀疏训练,同时优化压缩效率。第一阶段使用PQ索引评估了SNN中现有稀疏子网络的可压缩性,这促进了基于数据压缩见解的突触连接的重新线的自适应确定。在第二阶段,这种重新布线的比率严格告知动态突触连接过程,包括修剪和再生。这种方法显着改善了对深SNN中稀疏结构训练的探索,从压缩效率的角度来动态地调整稀疏性。我们的实验表明,这种稀疏的训练方法不仅与当前的深SNNS模型的性能保持一致,而且还显着提高了压缩稀疏SNN的效率。至关重要的是,它保留了使用稀疏模型启动培训的优势,并为将AI授予神经形态硬件的边缘提供了有前途的解决方案。