低运营成本 AWS 是精心设计的成果,旨在优化冷水机组的能源效率,从而降低运营成本,提高盈利能力、效率和经济管理。AWS 冷水机组采用新型高效 McQuay 单转子螺杆压缩机设计,大冷凝器盘管表面积可实现最大热传递和低排放压力,采用先进技术的冷凝器风扇,单程纯逆流壳管直接膨胀蒸发器,制冷剂压降低。低运行噪音水平 最新的压缩机设计使用单个主转子和两个相邻的旋转复合闸转子,使气体流速和随后的噪音水平达到最低水平,独特的新型风扇以极低的噪音水平移动大量空气,并且几乎无振动运行,因此在满负荷和部分负荷条件下的噪音水平都非常低。出色的可靠性 AWS 冷水机组根据尺寸有两个或三个真正独立的制冷剂回路,以确保任何维护(无论是计划内还是非计划内)的最大安全性。它们配备了坚固的压缩机设计,采用先进的复合压缩机闸转子材料和主动控制逻辑,并经过了完整的工厂运行测试,以实现优化的无故障运行。无限容量控制制冷容量控制通过微处理器系统控制的单螺杆非对称压缩机无级变化。每个单元都具有从 100% 降至 12%(双压缩机单元)或 7%(三压缩机单元)的无级容量控制。这种调节可使压缩机容量与建筑物冷却负荷完全匹配,而不会导致蒸发器水温波动。只有通过无级控制才能避免这种冷冻水温度波动。事实上,通过压缩机负荷阶跃控制,在部分负荷下,压缩机容量与建筑物冷却负荷相比会过高或过低。结果是降低了冷却器的能量成本,特别是在冷却器大部分时间运行的部分负荷条件下。无级调节单元具有阶跃调节单元无法比拟的优势。能够随时跟踪系统能源需求,并且能够提供稳定的出水温度,不会偏离设定点,这两点让您明白,只有使用无级调节装置才能满足系统的最佳运行条件。 卓越的控制逻辑 新的 MicroTech III 控制器提供易于使用的控制环境。控制逻辑旨在提供最高效率,在异常运行条件下继续运行,并提供装置运行历史记录。最大的好处之一是易于与 LonWorks、Bacnet 接口,以太网 TCP/IP 或 Modbus 通信。
低运营成本 AWS 是精心设计的成果,旨在优化冷水机组的能源效率,从而降低运营成本,提高盈利能力、效率和经济管理。AWS 冷水机组采用新型高效 McQuay 单转子螺杆压缩机设计,大冷凝器盘管表面积可实现最大热传递和低排放压力,采用先进技术的冷凝器风扇,单程纯逆流壳管直接膨胀蒸发器,制冷剂压降低。低运行噪音水平 最新的压缩机设计使用单个主转子和两个相邻的旋转复合闸转子,使气体流速和随后的噪音水平达到最低水平,独特的新型风扇以极低的噪音水平移动大量空气,并且几乎无振动运行,因此在满负荷和部分负荷条件下的噪音水平都非常低。出色的可靠性 AWS 冷水机组根据尺寸有两个或三个真正独立的制冷剂回路,以确保任何维护(无论是计划内还是非计划内)的最大安全性。它们配备了坚固的压缩机设计,采用先进的复合压缩机闸转子材料和主动控制逻辑,并经过了完整的工厂运行测试,以实现优化的无故障运行。无限容量控制制冷容量控制通过微处理器系统控制的单螺杆非对称压缩机无级变化。每个单元都具有从 100% 降至 12%(双压缩机单元)或 7%(三压缩机单元)的无级容量控制。这种调节可使压缩机容量与建筑物冷却负荷完全匹配,而不会导致蒸发器水温波动。只有通过无级控制才能避免这种冷冻水温度波动。事实上,通过压缩机负荷阶跃控制,在部分负荷下,压缩机容量与建筑物冷却负荷相比会过高或过低。结果是降低了冷却器的能量成本,特别是在冷却器大部分时间运行的部分负荷条件下。无级调节单元具有阶跃调节单元无法比拟的优势。能够随时跟踪系统能源需求,并且能够提供稳定的出水温度,不会偏离设定点,这两点让您明白,只有使用无级调节装置才能满足系统的最佳运行条件。 卓越的控制逻辑 新的 MicroTech III 控制器提供易于使用的控制环境。控制逻辑旨在提供最高效率,在异常运行条件下继续运行,并提供装置运行历史记录。最大的好处之一是易于与 LonWorks、Bacnet 接口,以太网 TCP/IP 或 Modbus 通信。
对于 HVAC 容量要求极高的船舶,Dometic Marine 的 Condaria 品牌设计并制造了容量高达 288 万 BTU/h 的冷冻水系统。这些冷水机组通常具有壳管式热交换器和可拆卸的半封闭压缩机,这些压缩机可在维护时打开,以确保系统在整个使用寿命期间保持最佳性能。每个压缩机都由变频器驱动,变频器可控制启动电流峰值和运行时的频率/速度范围。下图中的定制冷水机组就是这些高容量系统的示例。
适用于道路建设、土木工程或修复工程,该系列压缩机具有出色的可靠性、性能和压缩空气质量。由于配有完全可接近的门,维护也变得容易。压缩机标配多种选项,为客户节省大量成本。由于包含两个电池,即使在寒冷条件下也能实现可靠的运行和性能。这些压缩机的长使用寿命通过额外的发动机管理保护得到进一步增强。康明斯 QSB 4.5 系列柴油发动机配备电子燃油喷射,符合欧洲废气排放标准。
为涵盖可能的性能范围,我们开发了三种发动机模型:最有可能(衍生涡扇发动机)、最佳情况(全新涡扇发动机)和最坏情况(衍生涡喷发动机)。对于最有可能的情况,我们研究了基于 CFM56 的预计可用于 Aerion AS2 的发动机 (Fehrm, 2018)。在预期的 1.4 马赫飞行条件下,发动机的低压压缩机 (LPC) 压力比为 2,高压压缩机 (HPC) 压力比为 10,涡轮入口温度 (T4) 为 1650 K。为了使其适应 2.2 马赫的飞行,我们假设压力比受压缩机出口温度的限制,这是压缩机中材料温度限制的结果 (Fehrm, 2016)。这为我们提供了大约 7.5 的 HPC 压缩比。我们还假设涵道比为 3,与 Boom 所述的发动机计划一致。考虑到 2.2 马赫操作时产生的高冲压阻力,这可能是乐观的。
大型红外焦平面、滤光片或冷光学器件,目前使用更重的冷散热器。带有同轴脉冲管和挠性轴承压缩机的超小型、低质量低温冷却器的开发已经超越了之前描述的实验室版本 1,达到了工程模型成熟度。压缩机直接按比例缩小自 Northrup Grumman 的 TRL-9 飞行传统压缩机产品线。1,2,3,4 低温冷却器采用全焊接压缩机、小型轻型战术驱动电子设备和可与集成杜瓦组件接口的飞行式冷头。这种更成熟的冷却器实现在运行时受到随机和正弦振动,并未显示出永久性性能变化。它在剧烈振动下运行,在施加振动时仅表现出微小的性能变化。它已经过热性能测试,结果显示可重复早期开发模型的性能。
压力控制方法与加热模式更相关。加热时室外空气温度的变化比冷却时更大。在温暖的天气下,定速压缩机的容量输出过高,而在寒冷的环境中,容量输出过低。可变压缩机和压力控制算法可以解决这个问题。在低温环境下,系统在低吸入压力和排气压力下运行。微控制器增加压缩机调制,加热容量也根据热负荷增加。在温暖的环境下,调制较低,从而节省能源。加热模式下的排气压力控制提供“恒定的加热容量”,无论环境温度如何,也能节省能源。
特灵空调采用无刷磁阻直流压缩机控制、创新设计提高性能的热交换器以及众多高性能关键部件,实现了制冷EER和制热COP的行业顶级能效。高效直流变频压缩机降低25%的功耗。
该系列压缩机专为最恶劣的现场条件而设计,无论是用于道路建设、土木工程还是修复工作,都具有出色的可靠性、性能和压缩空气质量。配有完全可访问的门,维护也变得简单。压缩机标配多种选项,为客户节省大量成本。由于包含两个电池,即使在寒冷条件下也能实现可靠的运行和性能。这些压缩机的长使用寿命通过额外的发动机管理保护得到进一步增强。节能的 Deutz TCD4.1 L4 柴油发动机配备电子燃油喷射,符合欧洲废气排放标准。
GTF 推进系统的独特之处在于,它在风扇和低压轴之间配备了一个减速齿轮箱,驱动风扇的低压压缩机和低压涡轮就位于该齿轮箱上。齿轮箱使大直径的风扇旋转得更慢,同时使低压压缩机和涡轮旋转得更快。