量子计量学研究表明,与非纠缠态相比,使用多体纠缠态可以提高灵敏度。在本文中,我们量化了纠缠在测量量是与每个量子位单独耦合的参数的线性函数的情况下的计量优势。我们首先将海森堡极限推广到量子网络中非局部可观测量的测量,并基于多参数量子 Fisher 信息推导出一个界限。然后,我们提出了可以利用 Greenberger-Horne-Zeilinger (GHZ) 状态或自旋压缩状态的测量协议,并表明在 GHZ 状态下,该协议是最佳的,即它达到了我们的界限。我们还认为纳米级磁共振成像是该技术的一个有前途的设置。
量子计量学研究表明,与非纠缠态相比,使用多体纠缠态可以提高灵敏度。在本文中,我们量化了纠缠在测量量是与每个量子位单独耦合的参数的线性函数的情况下的计量优势。我们首先将海森堡极限推广到量子网络中非局部可观测量的测量,并基于多参数量子 Fisher 信息推导出一个界限。然后,我们提出了可以利用 Greenberger-Horne-Zeilinger (GHZ) 状态或自旋压缩状态的测量协议,并表明在 GHZ 状态下,该协议是最佳的,即它达到了我们的界限。我们还认为纳米级磁共振成像是该技术的一个有前途的设置。
量子计量学研究表明,与非纠缠态相比,使用多体纠缠态可以提高灵敏度。在本文中,我们量化了纠缠在测量量是与每个量子位单独耦合的参数的线性函数的情况下的计量优势。我们首先将海森堡极限推广到量子网络中非局部可观测量的测量,并基于多参数量子 Fisher 信息推导出一个界限。然后,我们提出了可以利用 Greenberger-Horne-Zeilinger (GHZ) 状态或自旋压缩状态的测量协议,并表明在 GHZ 状态下该协议是最佳的,即它饱和了我们的界限。我们还认为纳米级磁共振成像是该技术的一个有前途的设置。
量子计量学研究表明,与非纠缠态相比,使用多体纠缠态可以提高灵敏度。在本文中,我们量化了纠缠在测量量是与每个量子位单独耦合的参数的线性函数的情况下的计量优势。我们首先将海森堡极限推广到量子网络中非局部可观测量的测量,并基于多参数量子 Fisher 信息推导出一个界限。然后,我们提出了可以利用 Greenberger-Horne-Zeilinger (GHZ) 状态或自旋压缩状态的测量协议,并表明在 GHZ 状态下,该协议是最佳的,即它达到了我们的界限。我们还认为纳米级磁共振成像是该技术的一个有前途的设置。
量子计量学研究表明,与非纠缠态相比,使用多体纠缠态可以提高灵敏度。在本文中,我们量化了纠缠在测量量是与每个量子位单独耦合的参数的线性函数的情况下的计量优势。我们首先将海森堡极限推广到量子网络中非局部可观测量的测量,并基于多参数量子 Fisher 信息推导出一个界限。然后,我们提出了可以利用 Greenberger-Horne-Zeilinger (GHZ) 状态或自旋压缩状态的测量协议,并表明在 GHZ 状态下,该协议是最佳的,即它达到了我们的界限。我们还认为纳米级磁共振成像是该技术的一个有前途的设置。
>s lurncnt,I lnlroJut。:tion,剪切力和D�1h.l i ng剪切力和弯矩的微分方程,静定梁的剪切力和弯矩图。桁架:介绍,简单桁架和简单桁架的解决方案,截面法;接头法;如何确定构件是处于拉伸还是压缩状态;简单桁架;零力构件质心和惯性矩:介绍,平面,曲线,面积,体积和复合体的质心,平面面积的惯性矩,平行轴定理和垂直轴定理,复合体的惯性矩。运动学和动力学:线性运动、瞬时中心、达朗贝尔原理、刚体旋转、冲量和动量原理、功和能量原理。简单应力和应变:应力的定义、应力张量、轴向载荷构件的法向应力和剪应力、应力-应变关系、延性和脆性材料单轴载荷的应力-应变图、胡克定律、泊松比、剪应力、剪应变、刚度模量、弹性常数之间的关系。不同横截面构件的一维载荷、温度应力、应变能。
在非相对论量子系统中,利布-罗宾逊定理 [1-2] 规定了一个新出现的速度限制 v,在幺正演化下建立了局部性,并限制了执行有用量子任务所需的时间。在本次演讲中,我将介绍我们的工作 [3],即将利布-罗宾逊定理扩展到具有测量和自适应反馈的量子动力学。与测量可以任意违反空间局部性的预期相反,我们发现量子信息的速度最多可以提高 (M+1) 倍,前提是已知 M 个局部测量的结果;即使经典通信是即时的,这也是如此。我们的界限是渐近最优的,并且被现有的基于测量的协议所饱和 [4]。我们严格限制了量子计算、纠错、隐形传态以及从短程纠缠初始状态生成纠缠资源状态(Bell、GHZ、Dicke、W 和自旋压缩状态)的资源要求。我们的研究结果限制了使用测量和主动反馈来加速量子信息处理,并限制了大量已提出的量子技术的可扩展性。参考文献:[1] Lieb 和 Robinson,“量子自旋系统的有限群速度”,Comm. Math. Phys. 28, 251 (1972)。[2] Chen, Lucas 和 Yin,“多体量子动力学中的速度限制和局部性”,arXiv:2303.07386。[3] Friedman, Yin, Hong 和 Lucas,“带测量的量子动力学中的局部性和误差校正”,arXiv:2206.09929。[4] Briegel, Dur, Cirac 和 Zoller,“量子中继器:不完美局部操作在量子通信中的作用”,Phys. Rev. Lett. 81, 5932 (1998)。
引言:量子假设检验 [1-4] 是量子信息科学基础上最重要的理论领域之一 [5]。在玻色子环境下 [6],一些基本协议包括量子照明 [7-19],旨在在明亮的热噪声条件下更好地检测远程目标的存在,以及量子读取 [20],旨在提高从光学数字存储器中检索数据的速度。这些协议可以建模为量子信道鉴别问题,其中量子资源在检测不同程度的信道损耗方面的表现优于经典策略。在评估量子照明质量时,通常考虑的基本基准之一是使用相干态和零差检测。这被认为是最著名的(半)经典策略,通常用于评估量子资源(例如纠缠)[12,17] 在激光雷达/雷达应用中的优势[21-23]。这种经典策略显然是基于高斯资源(即高斯状态和测量)的,不涉及任何闲散系统。一个悬而未决的问题是确定是否存在另一种基于高斯资源的无闲散策略,其性能严格优于经典策略。在这项工作中,我们肯定地回答了这个问题,展示了使用具有适当优化压缩量的位移压缩状态的优势。对于照射在未知目标上的相同每个模式的平均信号光子数,这种最佳探针能够胜过相干态。虽然这可以在量子照明(即量子激光雷达应用)中得到证明,但在不同的参数范围内,如量子读取的典型情况,这种优势变得更加明显和有用。用于目标检测的优化探针。考虑以二元检验的方式检测目标:零假设