为了补偿CO 2捕获的高成本,本研究提出了一种新的解决方案,该解决方案将压缩的CO 2储能(CCES)系统集成到具有CO 2 Capture(Oxy_CCES)的氧气燃烧燃烧机中。能量存储的整合有可能从电价变化中产生套利。所提出的OXY_CCES系统可以达到34.1%的净效率,并且比液体的氧气储存氧气储存的氧气燃烧燃烧植物(Oxy_O 2)高34.1%,并且更高的发弹性效率为57.5%。建立了两种情况,即,建立了现有的氧气燃烧植物(S E I)和建造新工厂(S-II),以比较Oxy_CCES和OXY_O 2。在S E I中,OXY_CCE的回报时间为一年,在S-II中,OXY_CCE的电位电量成本(LCOE)增加了1.8%,低于OXY_O 2的电力。灵敏度分析表明,当峰值和谷电价格之间的差异以及能源存储系统的能力增加50%时,OXY_CCES系统的净现值(NPV)和LCOE分别增加了113.4%和1.7%,这会降低到NPV和LCOE的增加,而NPV和LCOE则增加了OXY_O_O的NPV和LCOE。©2022 Elsevier Ltd.
摘要 - BioInformatics应用程序通常需要根据其与特定序列目标的相似性过滤FastQ测序读取,例如消除与特定病毒相关的污染或隔离读取。尽管基于对齐的方法对这些任务有效,但它们表现出降低的灵敏度并可能引入高估,尤其是在面对较低的相似性搜索时。在本文中,我们使用一种新颖的无对齐方法来过滤FASTQ根据定义的相似性阈值读取。与基于对齐方式的方法不同,即使在相似性较低的方案中,例如在古代DNA中,我们的方法也保持较高的灵敏度。此外,我们的方法是基于压缩的,可以减轻其他方法固有的高估风险。我们在各种应用程序中演示了我们方法的多功能性,并提供了一种称为磁铁的公共开源物。磁铁提供了用于加速处理的多线程功能,并且可以在https://github.com/cobilab/magnet上自由访问。索引项 - 数据压缩,生物信息学,计算生物学,测序读取,数据滤波器
如[5]中,LET(γ,ϕ)表示一个组装空间(AS)或组件子空间。为了简化符号的利益,可以将(γ,ϕ)称为γ,而ϕ给出的边缘标记不相关。来自[5],我们可以说Cγ(x)表示组装空间γ中对象X的组装索引。令S =(γ,φ,f)是一个无限的组装空间,其中每个组装空间γ∈γ是有限的,φ是每个γ的相应边缘标签ϕγ的集合,f =(f 1,。。。,f n,。。。 )是嵌入的无限序列(每个嵌入也是[5]中所示的装配图),最终会生成s。也就是说,每个f i:{γi}⊆γ→{γi +1}⊆γ是一种特定类型的组装图,将单个组装子空间嵌入较大的组件子空间中,从而使所得的嵌套组装子空间的序列定义了一个总阶,其中 s
更正为:时效处理后 Al-Zn-Mg-Cu 铝合金中新 (Al, Zn) 3 Zr 沉淀物的形成及其对动态压缩的响应
为了优化服务寿命和破裂性碟片性能,大陆光盘制造和测试每个LotRX破裂盘订单,可根据您的应用程序要求可压缩或不可压缩的缓解条件。LotRX破裂盘仅针对可压缩(气/蒸气)的浮雕条件进行制造和测试,在不可压缩的(液体)应用中可能无法正常工作。如果存在可减轻不可压缩媒体的情况,或者仅适用于可压缩媒体
摘要。端到端图像压缩的最新进展可能会超过传统的编解码器,以超越率延伸性能。但是,当前的方法要么优先考虑人类概念质量,要么仅针对一个或几个预定的下游任务优化,从而忽略了涉及各种不可预见的机器视觉任务的更常见的情况。在本文中,我们提出了一个基于扩散的多任务统一图像压缩框架,旨在通过在开放设定的场景中纳入Hu-Man感知和多个视觉任务来扩展传统图像压缩的边界。我们提出的方法包括多任务协作嵌入模块和基于扩散的不变知识学习模块。以前的模块有助于完成多个任务的协作嵌入,而后一个模块通过将不变知识从可见的视觉任务中提炼出来,从而提高了对不可预见的任务的概括。实验表明,所提出的方法提取了用于Human和Machine Vision协作压缩的紧凑和多功能嵌入,从而带来了出色的性能。Specifically, our method outperforms the state-of-the-art by 52.25%/51.68%/48.87%/48.07%/6.29% BD-rate reduction in terms of mAP/mAP/aAcc/PQ-all/accuracy on the MS-COCO for object de- tection/instance segmentation/semantic segmentation/panoptic segmen- tation and video question answering tasks, 分别。
随着互联网视频、在线流媒体、闭路电视的使用量增加,以及互联网对普通人群的影响不断增加,视频及其处理成为一个有趣的领域。了解视频及其处理的需求已成为当今时代研究的一个重要领域。本文试图涵盖传统的视频处理、自第一年以来视频编解码器的进步、其起源、特点、缺点和通往下一阶段的进步。它深入介绍了视频压缩的需求、其中涉及的步骤,然后全面回顾了各个领域的视频压缩。文中详细解释了视频压缩的出现、起源和特点。这些信息有助于增加对过去的了解,并有助于关注视频编解码器的进步和转变。它总结了最近使用 CNN、NN 和深度学习进行视频处理的进展。
与燃烧后CO 2的捕获相比,使用SCO 2 Brayton-Cycle涡轮机启用了更大的减少和与可再生热量的杂交,并减少了水泥制造的67%。为CO 2分离和压缩的能源节省均可用于所有燃料:天然气,煤炭和生物量。
摘要 - 由于近年来的成就,量词计算机正成为现实。当今可用的量子计算机提供数百个Qubits,但在累积错误和量子状态衰减之前可以执行的操作数量仍然有限。关于误差积累,非本地操作(例如CX或CZ)是主要贡献者。减少所需非本地操作数量的一种有希望的解决方案是通过利用量子系统的固有高维功能来更有效地利用量子硬件。在一个称为电路压缩的过程中,量子位之间的非本地操作映射到Qudits的本地操作,即高维系统。在这项工作中,我们提出了一种启用量子电路压缩的策略,其目的是将给定电路中的Qubits映射到目标硬件的混合维数。此外,在引入捕获量子操作本质的新表示之前,我们讨论了电路压缩的原理以及Qubits和Qudits的物理结构,影响了图的量子状态的不同逻辑水平。基于此,我们提出了一种自动化方法,用于将任意门设置的Qubit电路映射到混合量子量子系统中,从而降低了非本地操作的数量。经验评估证实了拟议方法的有效性,将几乎一半的病例降低了多达50%的非本地操作。索引术语 - Quantum Computing,电路压缩,QUDITS最后,相应的源代码可在github.com/cda-tdum/qudit-compression上自由获得。
您不能为外部表或属于集群的表指定任何类型的表压缩。 您不能为具有 LONG 或 LONG RAW 列的表、由 SYS 模式拥有并驻留在 SYSTEM 表空间中的表或启用了 ROWDEPENDENCIES 的表指定任何类型的压缩。 不建议将 UNIFORM EXTENTS 与混合列压缩一起使用,因为对于大多数工作负载,配置统一区大小没有任何好处。在并行直接加载 (DSS) 中使用统一区时,会导致大量空间浪费并影响全扫描性能。空间浪费是因为在段合并期间数据库无法修剪最后部分使用的区。浪费与并行度 (DOP) 以及区大小呈线性关系。扫描性能也会由于相同的根本原因受到影响 – 大量未使用的块(来自最后一个区)合并到基础段中。 混合列压缩对 HCC 所需的最少数据量没有限制。即使每个段/分区只有几 MB 的数据,HCC 也可以非常有效。但是,在使用较少量的数据(每个段几 MB)和并行加载时,需要注意的是,并行加载有时会使用临时段合并,其中每个加载器进程都会创建一个单独的段,在这种情况下,Oracle 建议每个段/分区有几百 MB。 混合列压缩是为关系数据设计的,不适用于 BLOB(或 CLOB)中的非结构化数据。LOB 最好作为 SecureFiles LOB 存储在 Oracle 数据库中。Oracle 高级压缩的功能高级 LOB 压缩和高级 LOB 重复数据删除可以减少 SecureFiles LOB 所需的存储量。 混合列压缩不会压缩索引或索引组织表 (IOT)。可以使用高级索引压缩 LOW(高级压缩的功能)或前缀压缩(包含在 Oracle Database Enterprise Edition 中)来压缩索引(和 IOT)。 针对混合列压缩表/分区的 DML UPDATE 操作会随着时间的推移减少总体压缩节省,因为通过 DML 操作更新的数据不会压缩到与其他 HCC 压缩数据相同的数据压缩率。 当您更新使用混合列压缩压缩的表中的一行时,该行的 ROWID 可能会发生变化。 在使用混合列压缩压缩的表中,对单行的更新可能会导致多行锁定。因此,写入事务的并发性可能会受到影响。 混合列压缩每个 CU 使用一个锁。或者;您可以选择为压缩单元启用行级锁定。HCC 的默认值为无行级锁定;在 CREATE TABLE 或 ALTER TABLE MOVE 操作期间明确指定行级锁定。HCC 行级锁定是高级压缩的一项功能。