减少工业二氧化碳排放的领先技术之一是碳捕获和储存 (CCS)。现有出版物讨论了捕获过程的高能量需求,而忽略了二氧化碳运输所需的后续压缩过程,该过程也表现出强烈的能量需求。这项工作旨在研究和比较两种替代方法的能量需求,这些方法与传统工艺相比,用于将捕获的二氧化碳加压至 150 巴。捕获过程之后,二氧化碳通常接近大气压,由于压缩机的限制,需要多级压缩。在每个压缩阶段之后,都需要冷却以将流体保持在接近进一步压缩的最佳温度。所提出的替代方法利用处于超临界状态 (sCO2) 的压缩二氧化碳作为工作流体来回收压缩阶段中可用的热量。其中一种替代方法在每个冷却阶段在集成的开放式超临界朗肯循环 (sRC) 中使用 sCO2。除 sRC 之外的另一种方法在最终压缩阶段的捕获过程再生塔之前加热富含二氧化碳的液体流。压缩过程设计用于 2,779 吨/天的二氧化碳流,代表 400 MW 发电厂捕获的典型二氧化碳质量流量。结果表明,在测试的案例中,结合 sRC 和富含二氧化碳的流加热的情况是最节能的,比仅使用 sRC 的情况少耗能 5.11 MW,比没有中间冷却的传统压缩情况少耗能 4.31 MW。
摘要:从量子不一致性的角度研究原初引力波的压缩效应。构造了不具有量子不一致性原初引力波的经典态,并与邦奇-戴维斯真空进行比较,证明了原初引力波引起的宇宙微波背景涨落的角功率谱的振荡行为可以作为原初引力波量子不一致性的特征。此外,还讨论了量子退相干对超视界模式下原初引力波的纠缠和量子不一致性的影响。对于具有退相干效应的原初引力波态,我们考察了C. Kiefer 等人引入的退相干条件和关联条件(Class. Quantum Grav. 24 (2007) 1699)。我们表明,退相干条件不足以保证 PGW 的可分离性,而关联条件意味着物质主导时代的 PGW 具有量子不一致性。
相干量子现象的利用代表着计量学领域的一个新领域,该领域的研究旨在实现对物理现象的越来越精确的测量。量子计量学实验的原型可能是原子钟中使用的简单的拉姆齐干涉测量法,几十年来,它一直是时间和频率标准校准的基础。然而,现代量子计量学实验通常需要对几个量子自由度进行复杂的操纵才能获得单一的测量结果。例如,考虑量子逻辑光谱时钟测量,其中使用原子的量子力学运动作为总线,将一个原子的内部时钟跃迁状态转移到辅助原子中可检测的跃迁[1]。对 N 个不相关粒子集合进行测量的自然精度极限是标准量子极限,其中测量精度与 ∼ 1 / √ 成比例
飞机开发时间通常需要 6 到 8 年,从正式启动项目到投入使用(EIS),即技术就绪水平(TRL)6 到 TRL 8 [2],其中 TRL 6 代表该技术被认为可以设计成生产项目。随着实现零碳排放飞机所必需的革命性技术的引入,开发时间可能会更长。FlyZero 已将液氢确定为最有可能扩展到大型商用飞机的零碳排放燃料 [3]。实现这些全新的飞机需要克服重大的技术挑战。
小型民航机电通过使用数字机电设备来积极升级。船上“小吉普车”上机电雄元设备的数字驱动器数量超过了数百个。硬件现代化实际上已经达到了重新分配。大大提高了机甲设备的数字驱动器的速度和可靠性,仅通过算法现代化减少大量指标和功耗。对于仅使用电力或混合能源的低民航段,它绝对不可能是极其重要的。小民航由80%的专业人士管理,而是由恋人(类似于通过道路运输)管理。低民航是提高飞行安全性的主要重要性。出于这个原因,低民用航空的机甲电动分支的数字电动驱动器的算法现代化,旨在通过用算法(国家观察者)替换机械传感器,减少(在勃起的边界上延迟处理机械机制)来提高这些设备的可靠性。
相干量子现象的利用代表着计量学领域的一个新领域,该领域的研究旨在实现对物理现象的越来越精确的测量。量子计量学实验的原型可能是原子钟中使用的简单的拉姆齐干涉测量法,几十年来,它一直是时间和频率标准校准的基础。然而,现代量子计量学实验通常需要对几个量子自由度进行复杂的操纵才能获得单一的测量结果。例如,考虑量子逻辑光谱时钟测量,其中使用原子的量子力学运动作为总线,将一个原子的内部时钟跃迁状态转移到辅助原子中可检测的跃迁[1]。对 N 个不相关粒子集合进行测量的自然精度极限是标准量子极限,其中测量精度与 ∼ 1 / √ 成比例
飞机开发时间通常需要 6 到 8 年,从正式启动项目到投入使用(EIS),即技术就绪水平(TRL)6 到 TRL 8 [2],其中 TRL 6 代表该技术被认为可以设计成生产项目。随着实现零碳排放飞机所必需的革命性技术的引入,开发时间可能会更长。FlyZero 已将液氢确定为最有可能扩展到大型商用飞机的零碳排放燃料 [3]。实现这些全新的飞机需要克服重大的技术挑战。
从正式启动项目到投入使用(EIS),飞机开发时间通常需要六到八年,即技术就绪水平(TRL)6 到 TRL 8 [2] ,其中 TRL 6 代表该技术被认为已通过设计验证,可以投入生产项目。随着实现零碳排放飞机所必需的革命性技术的引入,开发时间可能会更长。FlyZero 已将液氢确定为最有可能扩展到大型商用飞机的零碳排放燃料 [3] 。实现这些全新的飞机需要克服重大的技术挑战。
•登录www.nsfas.org.za,然后单击“ mynsfas”选项卡。•单击注册。tick tick cockence选项,允许NSFAS验证和验证您提供的信息。•在ID文档上显示时输入ID号。•在您的ID文档中输入您的名字和姓氏。•输入您的电子邮件地址和手机号码。您的用户名将是您的电子邮件地址。•创建密码并确认密码。•单击注册。•单击寄存器后,将发送一个一次性PIN(OTP),将发送到您提供的电子邮件地址和手机号码。•检查您的手机和电子邮件中的OTP。•在提供的选项卡中输入OTP,然后单击提交。•然后,您将收到另一个短信和电子邮件确认您的Mynsfas帐户已创建。
摘要 - 由于近年来的成就,量词计算机正成为现实。当今可用的量子计算机提供数百个Qubits,但在累积错误和量子状态衰减之前可以执行的操作数量仍然有限。关于误差积累,非本地操作(例如CX或CZ)是主要贡献者。减少所需非本地操作数量的一种有希望的解决方案是通过利用量子系统的固有高维功能来更有效地利用量子硬件。在一个称为电路压缩的过程中,量子位之间的非本地操作映射到Qudits的本地操作,即高维系统。在这项工作中,我们提出了一种启用量子电路压缩的策略,其目的是将给定电路中的Qubits映射到目标硬件的混合维数。此外,在引入捕获量子操作本质的新表示之前,我们讨论了电路压缩的原理以及Qubits和Qudits的物理结构,影响了图的量子状态的不同逻辑水平。基于此,我们提出了一种自动化方法,用于将任意门设置的Qubit电路映射到混合量子量子系统中,从而降低了非本地操作的数量。经验评估证实了拟议方法的有效性,将几乎一半的病例降低了多达50%的非本地操作。索引术语 - Quantum Computing,电路压缩,QUDITS最后,相应的源代码可在github.com/cda-tdum/qudit-compression上自由获得。