本文对欧洲现有和新兴的空间制冷技术进行了全面的分类和评估。该研究旨在根据八个侦察参数(物理能量形式、基本工作/操作原理、制冷剂或传热介质、工作流体的相位、具体物理过程/设备、空间制冷技术类型、燃料类型和技术就绪水平)对 32 种替代空间制冷技术进行分类,并评估其主要特征和发展趋势。欧洲对空间制冷的需求不断增长,因此有必要彻底了解这些技术及其节能潜力。目前,欧洲大部分空间制冷需求由传统蒸汽压缩系统满足,而一小部分由热驱动热泵满足。研究表明,几种替代空间制冷技术有望实现节能制冷,但在短期和中期效率和成本方面尚无法与蒸汽压缩系统竞争。然而,膜热泵、热电子系统、热隧道系统和蒸发式液体干燥剂系统等技术在特定应用中表现出成本竞争力和能源效率。研究结果强调需要进一步研究和开发,以提高替代空间冷却技术的效率、成本和市场竞争力。该研究还强调了政策支持的重要性和减少温室气体排放的紧迫性,这可以推动可持续冷却解决方案的采用和发展。
本文对欧洲现有和新兴的空间制冷技术进行了全面的分类和评估。该研究旨在根据八个侦察参数(物理能量形式、基本工作/操作原理、制冷剂或传热介质、工作流体的相位、具体物理过程/设备、空间制冷技术类型、燃料类型和技术就绪水平)对 32 种替代空间制冷技术进行分类,并评估其主要特征和发展趋势。欧洲对空间制冷的需求不断增长,因此有必要彻底了解这些技术及其节能潜力。目前,欧洲大部分空间制冷需求由传统蒸汽压缩系统满足,而一小部分由热驱动热泵满足。研究表明,几种替代空间制冷技术有望实现节能制冷,但在短期和中期效率和成本方面尚无法与蒸汽压缩系统竞争。然而,膜热泵、热电子系统、热隧道系统和蒸发式液体干燥剂系统等技术在特定应用中表现出成本竞争力和能源效率。研究结果强调需要进一步研究和开发,以提高替代空间冷却技术的效率、成本和市场竞争力。该研究还强调了政策支持的重要性和减少温室气体排放的紧迫性,这可以推动可持续冷却解决方案的采用和发展。
工业的快速发展需要更多的能源来支持其制造过程。不幸的是,传统能源主要被用作对自然不利且会破坏环境的主要能源。如今,从使用传统能源向使用可再生能源的转变在世界范围内日益普及。然而,可再生能源的存在给电力系统带来了新的挑战,其影响是降低传统能源(如热发电机)的惯性(无惯性)值。这种情况会导致频率振荡并导致电力系统停电。为了解决这个问题,本文提出了基于超导磁能存储(SMES)的先进虚拟惯性控制(VIC),用于适应可再生能源融入电力系统的影响。之所以选择 SMES,是因为它具有快速响应和高达 90% 的效率。利用双区域电力系统模型来检验基于 SMES 的 VIC 模型。从仿真结果来看,基于的VIC通过压缩系统超调量、减少稳定时间,成功减少了频率振荡。
摘要 存储、传输和处理高维脑电图 (EGG) 信号是一项关键挑战。EEG 压缩的目标是去除 EEG 信号中的冗余数据。EEG 等医学信号必须具有高质量才能用于医学诊断。本文使用基于离散余弦变换 (DCT) 和双移位编码的接近零均方误差 (MSE) 的压缩系统来实现快速高效的 EEG 数据压缩。本文研究并比较了对变换和量化的输入信号应用或不使用增量调制的情况。在将输出映射到正值后应用双移位编码作为最后一步。使用来自 CHB-MIT 头皮 EEG 数据库的 EEG 数据文件测试系统性能。压缩比 (CR) 用于评估压缩系统性能。与以前对相同数据样本的研究相比,结果令人鼓舞。关键词:EEG、压缩、DCT、双移位编码、增量调制、映射到正值、直方图、压缩比。巴塞特莫尔 巴塞特莫尔 巴塞特莫尔 阿尔莫尔 莫尔
能源消耗是蒸气压缩制冷系统中的主要问题。在许多商业和住宅应用中,冷却系统现在消耗大量能源。因此,立即需要提高冷却系统的能源效率。这项研究通过将纳米颗粒溶解在聚熟料(POE)油中,创建了三个不同的石墨烯 - 氧化物纳米化剂样品,浓度为0.1、0.3和0.5 g/L。然后,分别使用30、40和50 g R600A(异丁烷)制冷剂的纳米化浓度进行测试。结局与聚滤器(POE)油对比,该油作用是主要的润滑物质。根据结果,在0.3 g/l的0.3 g/l石墨烯 - 氧化物纳米化剂中的40克质量电荷表现出最大的性能,最大制冷效应为0.197719 kW,最高的性能系数(COP)为1.72,系统最低的功率为0.115 kW。因此,纯聚酯(POE)油可以用蒸气压缩系统中的石墨烯 - 氧化纳米化剂代替。
摘要:相变材料(PCM)基于基于网格相互作用的住宅建筑物的热能储存(TES)可以提供能源和成本减少的优势。研究人员确定,这些好处差异很大,具体取决于PCM相变温度(PCT),总TES存储容量,系统配置以及建筑物的位置和气候。在这项研究中,使用理想化的方法报道了新型热泵(HP)集成TES系统的初步技术经济性能。在美国的三个不同气候中,为住宅建筑物的1年供暖和冷却负荷建模了简化的HP-TES。对HP的蒸气压缩系统进行了修饰,以与TES集成,并由HP介导了所有对TES的热传递。使用单个PCM进行加热和冷却,PCT和TES容量有所不同,以观察它们对建筑物能源消耗,峰值负载转移和节省的影响。在纽约市的PCT为30℃的PCT和休斯顿和伯明翰的20℃时,电力消耗,公用事业成本和高峰电需求量的最大减少。通过使用使用时间时间表来减少峰值负载,分别减少了休斯敦,纽约市和伯明翰的峰值能源消耗。TE具有170 MJ存储容量,允许最大需求从高峰时段转移到非高峰时段,一旦TES容量等于在最极端的环境条件下所经历的每日建筑物热负载,回报率就会降低。
由于全球表面温度,人口增长,更快的城市化和收入增长的增长,冷却需求的指数增加发生在过去几年中。由于这些冷却驱动因素的影响更大,发展中国家正面临重大问题。常规的蒸气压缩系统是能量的,并且涉及危险的化学物质。目前的论文提出了一种创新的间接蒸发冷却系统,具有较高的能量性能,更少的排放和无化学的操作。为了绘制全面的性能,开发了一个原型,并在各种外部空气条件下进行了测试。然后开发了基于人工神经网络(ANN)的机器学习模型,其中包含重要的输入参数,包括室外空气温度,空气流量比,工作空气温度和空气湿灯泡温度,以预测供应空气温度。隐藏层中具有九个神经元的ANN模型表现出出色的建模性能(r 2)值(r 2)值约1,均方根误差分别为0.046°C,0.06℃和0.06℃,分别在训练,测试和验证阶段中。一次(OFAT)技术一次由一个因素进行的可变显着性分析表明,工作进气温是预测供应温度的最重要参数,其显着性因子为33%。根据合并的实验和ML模型,所提出的系统在48℃的室外空气中产生了130 W的冷却CA的能力,并将温度下降超过20℃。所达到的相应性能系数(仅用于冷却)为32。还表明,增强的IEC在30至48℃的环境温度下稳定运行,并在Ashrae-55和ISO7730的舒适区内保持空气温度。