现将2006年11月29日至12月8日召开的IMO第82届海上安全委员会(MSC 82)审议结果介绍如下。 1.通过条约等强制性要求。本次通过的条约规则及相关规则修正案如下。每个项目均按生效日期组织。 1.1 生效日期:预定2008年7月1日 (1)与SOLAS第II-1章相关(i)II-1/3-2规则的修订-压载舱涂层性能标准(见附件1的附件1和附件2) A通过了 SOLAS II-1/3-2 法规修正案草案和油漆性能标准草案,使油漆性能标准成为 SOLAS 公约的强制性标准。 适用范围为500总吨及以上的所有船型的压载舱和150m及以上散货船的双舷侧舱室(包括空隙处所)。这里的散货船是指第十二章新定义的散货船。 。 是。 申请期限与MARPOL方法类似: - 2008年7月1日或之后的施工合同 - 2009年1月1日或之后动工(仅限于没有施工合同的情况) - 2012年7月1日之后 适用于以下情况上述内容适用。 (2) SOLAS 第 II-2 章相关(见附件 2、附件 1) (i) II-2/4.5.2.3 规则的修正案 - 关于货物区域防火要求的统一修正案 SOLAS 第 II-2 章的各规则为了协调 A-0 中要求的防火结构要求的范围添加了一项允许安装窗户和舷窗的规定。 (ii) II - 第 2/1、3、5、6、7、9 和 10 条修正案 - 有关客船客舱阳台 在客船客舱阳台安装固定式火灾探测和报警系统以及固定式加压喷水系统船舶或增加了要求使用不燃材料的规定。这不仅适用于2008年7月1日或之后建造的新客船,也适用于该日期之前建造的现有客船。 2008 年 7 月 1 日后首次检查需符合要求。 (3) SOLAS 第 III 章-救生设备相关的修订(见附件 2、附件 1) 为确保 SOLAS 第 III 章的规定与 LSA 规则等相关规定的一致性进行了总体审查,建议并作出了修改。
本报告扩展了美国海军为开发使用寿命为 15-20 年的油箱防腐协议而开展的工作。本报告重点介绍如何控制新型双壳船设计中内壳和外壳之间区域的腐蚀。该区域被视为空隙或海水压载舱。1990 年的《石油污染法》引起了船东、船舶建造商、船舶运营商和船级社对分析和评估双壳船设计船体间空间的长期防腐要求的兴趣。根据从船级社、美国、欧洲和日本船舶、涂料制造商、海事杂志文章、报告和美国海军收集的信息,提供了推荐的船体间空间防腐协议。给出了关于使用阴极保护、气相抑制剂和金属喷涂层的结论。制定了指南来评估是否修复或更换船体间空间的涂层;检查船体间空间的涂层;对船体间区域钢表面涂层应用的质量保证要求;以及对双壳船熟练油漆工、油漆主管和油漆检查员的培训。
本报告扩展了美国海军为开发使用寿命为 15-20 年的油箱防腐协议而开展的工作。本报告重点介绍如何控制新型双壳船设计中内壳和外壳之间区域的腐蚀。该区域被视为空隙或海水压载舱。1990 年的《石油污染法》引起了船东、船舶建造商、船舶运营商和船级社对分析和评估双壳船设计船体间空间的长期防腐要求的兴趣。根据从船级社、美国、欧洲和日本船舶、涂料制造商、海事杂志文章、报告和美国海军收集的信息,提供了推荐的船体间空间防腐协议。给出了关于使用阴极保护、气相抑制剂和金属喷涂层的结论。制定了指南来评估是否修复或更换船体间空间的涂层;检查船体间空间的涂层;对船体间区域钢表面涂层应用的质量保证要求;以及对双壳船熟练油漆工、油漆主管和油漆检查员的培训。
化学品船船体检验 目录 1.总则 1.1 适用范围 1.2 定义 1.3 修理 1.4 厚度测量和近距检验 1.5 遥感检查技术 (RIT) 2.特别检验 2.1 附表 2.2 范围 2.2.1 总则 2.2.2 干船坞检验 2.2.3 液舱保护 2.3 整体检验和近距检验的范围 2.4 厚度测量的范围 2.5 液舱试验的范围 2.6 船龄超过 10 年的化学品船 3.年度检验 3.1 附表 3.2 范围 3.2.1 总则 3.2.2 船体检查 3.2.3 露天甲板检查 3.2.4 货泵舱和管隧检查(如有) 3.2.5 压载舱检查 4.中间检验 4.1 时间表 4.2 范围 4.2.1 总则 4.2.2 船龄 5 - 10 年的化学品船 4.2.3 船龄 10 - 15 年的化学品船 4.2.4 船龄 15 年以上的化学品船 5.检验准备 5.1 检验计划 5.2 检验条件 5.3 进入结构 5.4 检验设备 5.5 救援和应急响应设备 5.6 海上或锚地检验 5.7 检验计划会议 6.船上文件 6.1 总则 6.2 检验报告文件 6.3 支持文件 6.4 船上文件审查
执行摘要 加拿大交通部代表船舶结构委员会委托 BMT 舰队技术有限公司根据招标编号 T8275- 020463/001/SS 评估“压载水化学处理技术导致的结构完整性恶化”。世界各地已从生物有效性的角度对各种压载水处理方法的有效性进行了大量研究和开发。2004 年 2 月,国际海事组织同意了第一个包含生物有效性标准的国际压载水管理公约。尽管人们担心深水压载交换的全球强度问题会危及船舶的安全运行,但迄今为止的研究均未检查过结构在暴露于压载水处理技术,特别是化学药剂后的长期完整性方面。该项目分为几个任务,首先进行广泛的文献综述。综述研究了钢材在淡水和咸水中的腐蚀、pH 值和温度对腐蚀的影响以及氧气的作用。综述表明,暴露在海水中的钢材的腐蚀速率从 0.02 到 0.37 毫米/年不等,平均腐蚀速率约为 0.1 毫米/年。在开放的自然系统中,腐蚀速率由氧气从本体溶液到钢材表面的扩散速率控制,而受到侵蚀的碳钢的成分对腐蚀速率没有影响。一些研究表明,最初的腐蚀速率较高,至少是暴露后一个月内开始的稳定状态腐蚀速率的 2.5 倍。综述还综述了 pH 值对腐蚀速率的影响,对于含有 NAOH 或 HCl 的软自来水,观察到 pH 值在 4 到 10 之间对腐蚀速率没有影响;但是,使用多种添加剂后,腐蚀速率在 pH 值 4 到 10 范围内会发生巨大变化。腐蚀速率还随温度升高而升高。当腐蚀由氧气扩散控制时,在 0 至 30°C 之间,给定 O 2 浓度下的腐蚀速率会加倍。其他加速本体扩散的因素(例如搅拌和润湿和干燥循环,使大气中的氧气在干燥阶段更好地通过弯月面)也会加速腐蚀。这些因素解释了在海洋环境中观察到的在水线和飞溅区腐蚀加剧的原因。研究表明,腐蚀速率也会随着盐度的增加而增加,并在盐浓度约为 1 ppt 时达到最大值,但是,此后腐蚀速率会随着盐浓度的增加而降低,这与盐浓度超过 1 ppt 后水中溶解氧的减少有关。文献综述中还介绍了有关微生物腐蚀 (MIC) 的信息,重点介绍了厌氧腐蚀。文献讨论了厌氧微生物腐蚀的机制以及更重要的氧气的作用等问题,并开展了研究 MIC 的不同实验项目。脱氧是提出的防止生物膜生成从而减少微生物腐蚀的技术之一。然而,人们普遍认为,由于压载舱排空和充满而交替出现的脱氧和氧化条件可能会导致更高的腐蚀速率。
执行摘要 BMT 船队技术有限公司受加拿大交通部委托,招标编号为T8275- 020463/001/SS,代表船舶结构委员会评估“压载水化学处理技术导致的结构完整性恶化”。从生物有效性的角度看,全球对各种压载水处理方法的有效性进行了大量研究和开发,2004 年 2 月,国际海事组织同意了第一个包含生物有效性标准的国际压载水管理公约。虽然人们担心深水压载交换的全球强度问题会危及船舶的安全运行,但迄今为止,尚无任何研究检查过结构暴露于压载水处理技术(特别是化学药剂)的长期完整性方面。该项目已分为几个任务,首先进行广泛的文献综述。这篇综述研究了淡水和咸水中钢的腐蚀、pH 值和温度对腐蚀的影响以及氧气的作用。这篇综述指出,暴露在海水中的钢的腐蚀速率从 0.02 到 0.37 毫米/年不等,平均速率约为 0.1 毫米/年。在开放的自然系统中,腐蚀速率受氧气从本体溶液到钢表面的扩散速率控制,而受到侵蚀的碳钢的成分对速率没有影响。最初的腐蚀速率较高,至少是随后稳定状态速率的 2.5 倍,根据一些研究,稳定状态速率在暴露后一个月内开始。还回顾了 pH 值对腐蚀速率的影响,对于含有 NAOH 或 HCl 的软自来水,观察到 pH 值在 4 到 10 之间对腐蚀速率没有影响;然而,使用添加剂的组合,在 pH 值 4 和 10 范围内腐蚀率可能会发生显著变化。腐蚀率也随温度升高而增加。当腐蚀由氧气扩散控制时,给定 O 2 浓度下的腐蚀率在 0 至 30°C 之间加倍。加速本体扩散的其他因素,例如搅拌和润湿和干燥循环,使大气中的氧气在干燥阶段更好地通过弯月面,也会加速腐蚀。这些因素解释了在海洋环境中在水线和飞溅区观察到的增强腐蚀。研究表明,腐蚀速率也会随着盐度的增加而增加,在盐浓度约为 1 ppt 时达到最大值,但是,此后腐蚀速率会随着盐浓度的增加而降低,这与盐浓度超过 1 ppt 后水中溶解氧的减少有关。文献综述中还介绍了微生物腐蚀 (MIC) 的信息,重点关注厌氧腐蚀。已经讨论了厌氧微生物腐蚀的机制以及更重要的氧气的作用等问题,并开展了研究 MIC 的不同实验计划。脱氧是正在提出的防止生物膜生成并因此减少微生物引起的腐蚀的技术之一。然而,普遍认为,由于压载舱排空和充满而交替出现的脱氧和氧化条件可能会导致更高的腐蚀速率。
执行摘要 BMT 船队技术有限公司受加拿大交通部委托,招标编号为T8275- 020463/001/SS,代表船舶结构委员会评估“压载水化学处理技术导致的结构完整性恶化”。从生物有效性的角度看,全球对各种压载水处理方法的有效性进行了大量研究和开发,2004 年 2 月,国际海事组织同意了第一个包含生物有效性标准的国际压载水管理公约。虽然人们担心深水压载交换的全球强度问题会危及船舶的安全运行,但迄今为止,尚无任何研究检查过结构暴露于压载水处理技术(特别是化学药剂)的长期完整性方面。该项目已分为几个任务,首先进行广泛的文献综述。这篇综述研究了淡水和咸水中钢的腐蚀、pH 值和温度对腐蚀的影响以及氧气的作用。这篇综述指出,暴露在海水中的钢的腐蚀速率从 0.02 到 0.37 毫米/年不等,平均速率约为 0.1 毫米/年。在开放的自然系统中,腐蚀速率受氧气从本体溶液到钢表面的扩散速率控制,而受到侵蚀的碳钢的成分对速率没有影响。最初的腐蚀速率较高,至少是随后稳定状态速率的 2.5 倍,根据一些研究,稳定状态速率在暴露后一个月内开始。还回顾了 pH 值对腐蚀速率的影响,对于含有 NAOH 或 HCl 的软自来水,观察到 pH 值在 4 到 10 之间对腐蚀速率没有影响;然而,使用添加剂的组合,在 pH 值 4 和 10 范围内腐蚀率可能会发生显著变化。腐蚀率也随温度升高而增加。当腐蚀由氧气扩散控制时,给定 O 2 浓度下的腐蚀率在 0 至 30°C 之间加倍。加速本体扩散的其他因素,例如搅拌和润湿和干燥循环,使大气中的氧气在干燥阶段更好地通过弯月面,也会加速腐蚀。这些因素解释了在海洋环境中在水线和飞溅区观察到的增强腐蚀。研究表明,腐蚀速率也会随着盐度的增加而增加,在盐浓度约为 1 ppt 时达到最大值,但是,此后腐蚀速率会随着盐浓度的增加而降低,这与盐浓度超过 1 ppt 后水中溶解氧的减少有关。文献综述中还介绍了微生物腐蚀 (MIC) 的信息,重点关注厌氧腐蚀。已经讨论了厌氧微生物腐蚀的机制以及更重要的氧气的作用等问题,并开展了研究 MIC 的不同实验计划。脱氧是正在提出的防止生物膜生成并因此减少微生物引起的腐蚀的技术之一。然而,普遍认为,由于压载舱排空和充满而交替出现的脱氧和氧化条件可能会导致更高的腐蚀速率。
执行摘要 加拿大交通部代表船舶结构委员会委托 BMT 舰队技术有限公司根据招标编号 T8275- 020463/001/SS 评估“压载水化学处理技术导致的结构完整性恶化”。世界各地已从生物有效性的角度对各种压载水处理方法的有效性进行了大量研究和开发。2004 年 2 月,国际海事组织同意了第一个包含生物有效性标准的国际压载水管理公约。尽管人们担心深水压载交换的全球强度问题会危及船舶的安全运行,但迄今为止的研究均未检查过结构在暴露于压载水处理技术,特别是化学药剂后的长期完整性方面。该项目分为几个任务,首先进行广泛的文献综述。综述研究了钢材在淡水和咸水中的腐蚀、pH 值和温度对腐蚀的影响以及氧气的作用。综述表明,暴露在海水中的钢材的腐蚀速率从 0.02 到 0.37 毫米/年不等,平均腐蚀速率约为 0.1 毫米/年。在开放的自然系统中,腐蚀速率由氧气从本体溶液到钢材表面的扩散速率控制,而受到侵蚀的碳钢的成分对腐蚀速率没有影响。一些研究表明,最初的腐蚀速率较高,至少是暴露后一个月内开始的稳定状态腐蚀速率的 2.5 倍。综述还综述了 pH 值对腐蚀速率的影响,对于含有 NAOH 或 HCl 的软自来水,观察到 pH 值在 4 到 10 之间对腐蚀速率没有影响;但是,使用多种添加剂后,腐蚀速率在 pH 值 4 到 10 范围内会发生巨大变化。腐蚀速率还随温度升高而升高。当腐蚀由氧气扩散控制时,在 0 至 30°C 之间,给定 O 2 浓度下的腐蚀速率会加倍。其他加速本体扩散的因素(例如搅拌和润湿和干燥循环,使大气中的氧气在干燥阶段更好地通过弯月面)也会加速腐蚀。这些因素解释了在海洋环境中观察到的在水线和飞溅区腐蚀加剧的原因。研究表明,腐蚀速率也会随着盐度的增加而增加,并在盐浓度约为 1 ppt 时达到最大值,但是,此后腐蚀速率会随着盐浓度的增加而降低,这与盐浓度超过 1 ppt 后水中溶解氧的减少有关。文献综述中还介绍了有关微生物腐蚀 (MIC) 的信息,重点介绍了厌氧腐蚀。文献讨论了厌氧微生物腐蚀的机制以及更重要的氧气的作用等问题,并开展了研究 MIC 的不同实验项目。脱氧是提出的防止生物膜生成从而减少微生物腐蚀的技术之一。然而,人们普遍认为,由于压载舱排空和充满而交替出现的脱氧和氧化条件可能会导致更高的腐蚀速率。