在被进食之前,预组件会预先混合。消化器将加热至38°C。每日原料混合物将在25%干物质(DM)和10吨浆液中约为10吨草青贮饲料,在8%DM处。每个的数量将取决于青贮饲料质量,主要是干物质消化率。该广告植物将需要大约70公顷的青贮饲料和1,000头牛的冬季浆液。
本文报告了对生物塑料厌氧降解和转化为沼气的微生物适应的新研究结果。进行了三种顺序的厌氧消化(AD)运行,以支持微生物适应于两种不同的生物塑料,基于淀粉的(SBS)和多乳酸(PLA)。SBS和PLA生物塑料的AD被接种物适应AD后对基板的适应而受到青睐。sbs转化为沼气增加了52%(从94 nl kgvs -1),与淀粉降解细菌的生长相关,例如氢孢子虫,卤代菌和卤素。PLA厌氧降解增长了97%(从395至779 NL Miogas KGVS -1),这与已知的Pla降解者(如替代性降解剂)(如替代菌粒,甲烷疗法生物杆菌)和tepidanaerobacter的适应性有关。微生物过度化似乎是一种合适的低成本策略,可以通过促进其厌氧生物降解并转化为沼气来增强生物塑料循环。
sensabac-DHC - 厌氧脱氯培养物,用于LCC地下水损伤产品Sensabac-DHC的生物学培养物是实验室富集的微生物培养物,其中含有含有该物种的Dehalococcoides McCartyi,并具有高还原性的LCC降低潜力。实践经验表明,在自然条件下和生物刺激条件下,地下水中通常在地下水中积累了大量积累。生物提示可确保在厌氧条件下这些LCC成分也可以快速有效地处理。应用生物强调适用于在自然条件下无法检测到LCC降解的地点,或者尽管在地下水中有适当的环境条件和基板供应,但在自然条件下未检测到LCC降解。使用生物调节培养物是有效的,在它们已经有足够的环境和有利的辅助基板供应的情况下,地下水中的辅助基板供应有效。如果条件尚不适合生物提高,则通常可以通过添加适当的底物来提前调整这些条件。使用的脱氯培养物来自具有强烈的脱氯和降解相关酶TCEA,VCRA和BVCA的高基因拷贝数。一旦下达订单,准备了用于相应现场应用的尺寸的生物鼓声解决方案,并在实验室中孵育数周。培养物受环境条件和微生物生长反应的持续监测。通过QPCR分析进行质量控制,以评估TCEA,VCRA和BVCA的基因拷贝数,以确保生物学培养具有所需的降解潜力。一旦达到了相应的高基因拷贝数,就可以使用培养物,并在厌氧条件下渗入地下水中的地下水。
摘要:不断增长的世界人口意味着对地球资源的压力更大。目前,浪费了30%的食物,这对人类和环境都带来了重大风险。通过微生物生物转化的过程来抵消食物浪费(FW)的生长的一种方法,从而将FW转化为一系列营养密集的生物含量。这种方法不仅促进了高度理想的循环经济,而且还可以减少无机肥料的使用,从而通过增加的温室气体,土壤和水特征的变化以及生物多样性的丧失对环境产生不利影响。FW对生物肥料的生物转化依赖于有氧(堆肥)和厌氧消化的过程。最近,替代分解技术包括生长的特定有益微生物,例如有效的微生物,以加快崩溃过程。微生物可以充当生物刺激剂和生物成分,具有固定能力,并提供避免双重和非生物胁迫的保护,从而增强了植物的生长和整体健康。FW的潜在用途是复杂且多样的,但是进行了积极的研究,以有效地利用此资源来实现BioFertiliser应用程序。
摘要:厌氧消化(AD)用于治疗由于人口增长和全球经济的扩展而产生的市政固体废物(MSW)的不断增长的有机分数。广泛应用AD导致残留固体消化不断增加,这必然需要进一步处置。有必要提高广告效率并降低大量消化率。这项研究研究了在不同的热解温度(300℃,500℃和700℃)以及500℃下的玉米毒生物炭及其对AD性能的影响。生物炭的pH值随着热解温度的升高而增加,而电导率则降低。大孔主导了生物炭的孔径,并随着热解温度的升高而降低。生物炭制备温度显着影响了效率。在700℃制备的生物炭胜过其他组,将沼气产量提高了10.0%,有效地缩短了滞后时间,并将平均化学氧需求(COD)降解率提高了14.0%。添加生物炭(700°C)和玉米秸秆生物炭增加了挥发性脂肪酸(VFAS)氧化细菌的相对丰度,从而加快了AD系统中的酸转化率。Biochar促进了直接种间电子的电子传递,在DMER64和Trichococcus之间使用甲烷萨塔,从而增强了沼气的生产性能。这些发现证实了源自消化酸盐的生物炭促进了MSW的AD系统中的沼气产生和酸的转化。此外,生物炭具有改进的AD稳定性,这代表了回收消化酸盐的有前途的方法。
图2 Anaramos测量原理的示意图,具有示例性压力,氢和二氧化碳数据。(a)基于反复阶段的气体传递速率测量原理。虚线和罗马数字(I - III)代表相变。(I阶段)带有闭合阀的测量阶段,导致天空的气体积累和浓度增加。(II阶段)高流动相,特异性培养气体通过顶空气体的增加,以快速平衡气相。(第三阶段)低流相,并用特定的培养气体积极清除烧瓶顶空。黑匣子中的方程式简化了总气体转移速率(TGTR),氢转移速率(HTR)和二氧化碳转移速率(CTR)的计算。用于转移速率计算的部分压力DP的斜率在(a)中表示为绿色三角形。(b)压力,(c)氢和(d)二氧化碳传感器的生物重复材料的示例性传感器原始数据。Anaramos,厌氧呼吸活动监测系统。
用于撤离替换技术的指示:1。将培养皿放在架子上,然后将厌氧指示条插入板架上的较小夹子中。2。将加载的机架放入聚碳酸酯罐中。3。确保正确将硅'o'环正确放在罐子上后,将装有附件的盖子放在罐子上。施加三个指夹,然后拧紧直至紧紧。4。必须将称为真空Chuck的金属配件用于疏散/替换技术,以使第一个真空降低。5。安装真空盘连接到真空线上的真空盘,以标记为“真空”并按下(不要螺钉)的阀。拧紧会损坏密封橡胶垫圈并导致Chuck泄漏。6。将系统撤离到HG中约30。7。使用后,只需立即将真空卡盘从真空阀上抬起即可断开连接。观察压力表。在此阶段将检测到罐子中的泄漏,因为真空读数不会保持恒定。8。将连接到气体供应的压力连接到罐子的压力阀上。将气体混合物运到罐子中,直到压力为零。断开压力袋。9。孵化罐子。10。孵育后,指示条应用正常的实验室废物丢弃。
•博士学位南佛罗里达大学(USF)的主管:六博士学位研究生(两名获得了博士学位,现在在该领域聘用)•研究主管,本科生的研究经验(REU) @ USF:三名REU学生•研究主管•研究生,大满贯研究生研究:六个本科生•研究生•首席组织者,重点主题委员会委员会领导人委员会及20222222222222222222222222. 2022 MMM- INTERMAG联合会议•IEEE Magnetics Society,2017年技术委员会成员 - ••2021年APS March会议,GMAG单位•会议主题委员会成员,GMAG单位•会议主席兼编辑,联合Intermag和Magnetism and Magnetism and Materigation Conference,2019年。。南佛罗里达大学(USF)的主管:六博士学位研究生(两名获得了博士学位,现在在该领域聘用)•研究主管,本科生的研究经验(REU) @ USF:三名REU学生•研究主管•研究生,大满贯研究生研究:六个本科生•研究生•首席组织者,重点主题委员会委员会领导人委员会及20222222222222222222222222. 2022 MMM- INTERMAG联合会议•IEEE Magnetics Society,2017年技术委员会成员 - ••2021年APS March会议,GMAG单位•会议主题委员会成员,GMAG单位•会议主席兼编辑,联合Intermag和Magnetism and Magnetism and Materigation Conference,2019年。•成员,高级光源外部审查委员会DOE三年期审查,2021年7月26日至29日•外部审查委员会成员,《批判性决策-2审查》高级光子源升级(APS-U)项目,Argonne,IL,2018年。•出版物主席,第12届国际同步辐射仪器会议(SRI2015),纽约,纽约,2015年7月6日至10日。
摘要:动物粪便的厌氧消化导致可再生能量(沼气)和富含营养的生物肥料的产生。该技术的进一步好处是减少了肥料储存过程中否则会发生的温室气体排放。由于动物粪便使厌氧的消化成本效益并进一步推进了较高甲烷产量的技术,因此最重要的是,要找到改善瓶颈的策略至关重要鸡肉,鸭子或猪粪。本综述总结了不同动物粪便的特征,并洞悉了潜在的微生物机制,从而导致厌氧消化过程引起挑战性问题。在高氨气过程中的保留时间和有机负荷速率放在了高氨气中的保留时间和有机负荷速率上,应设计和优化,以支持耐受高氨疾病的微生物,例如酸性乙酸乙酸替代性乙酸氧化细菌和氢蛋白毒素。此外,总结了用于稳定和增加动物粪便的甲烷产量的运营管理,包括支撑物质,添加微量元素或掺入氨去除技术。审查是最终的,讨论了概述动物粪便厌氧消化过程的可疑操作方法所需的研究,以规避过程不稳定性并改善过程性能。
在这两个腔室中仍在试图将较长的链脂肪吸收到较短的链脂肪酸碳源中。这两个腔室中的主要微生物都是乳杆菌,主要参与水解阶段,直到酸生成阶段。这导致积累了更多的低链脂肪酸(五烯酸)。特别是,与其他样本位置相比,HC呈现了所有VFA的最大数量。通常,更高链脂肪酸的数量更大,这意味着尚未被微生物消化的大多数脂肪酸。,如果我们能够利用这些未使用的长链脂肪酸,则可以增加该社区的沼气产量。