摘要。沼气是一种富含甲烷的气体,该气体是由废物的微生物消化(农业,污水和土地填充)产生的,可用于发电。厌氧消化酯的沼气生产率低成为牛粪加工的可能性。沼气的产生受到甲烷菌细菌的生物量的影响,在消化酯中含有有机物的转化中,因此需要其他甲烷作菌细菌来加速生物含量产生的速率,即从牛肉量厌氧酯类蒸发酯的甲烷基础上加速甲烷质。细菌分离。这些样品在厌氧腔中在37°C下孵育,分离后,通过几种生化测试鉴定细菌。基于进行的研究,单个甲烷菌细菌的单个菌落是革兰氏阴性细菌,其中分离株的结果表明甲烷杆菌属的细菌。通过添加15%V/V的细菌分离株获得了最高的沼气产生。可以从40 mL产生的沼气体积中看到发酵过程的14天。
不可避免的食物浪费越来越多地成为一种资源,而不是废物流。从房屋中收集的剩余食物废物中包含的有机材料,食品制造和零售代表着重要的可持续能源。通过厌氧消化处理,它会产生富含甲烷的沼气。可以使用有机食品排放量,而不是将有机食品垃圾用于垃圾填埋场,而是使用有机食品的厌氧消化产生的沼气可用于发电,生物甲烷,甚至用于车辆燃料。
单元I微生物营养 - 营养素需求,微生物的营养群。通过细胞吸收营养 - 被动,促进的扩散,主动转运,群体易位和铁吸收。单元II不同的生长曲线不同阶段 - 生成时间。微生物生长的测量。 批次,连续和同步培养,数字生长,环境因素对生长的影响(温度,pH,溶质,水活动,氧气和压力)。 III单元碳水化合物代谢 - EMP,ED,五肽磷酸盐途径,TCA循环,有氧呼吸,氧化磷酸化,电子转运链(原核生物和真核),底物水平磷酸化。 厌氧呼吸。 解偶子和抑制剂。 单位IV厌氧呼吸,特别参考异化硝酸盐还原(反硝化;硝酸盐/硝酸盐和硝酸盐/氨/氨呼吸;发酵硝酸盐还原)。 发酵 - 酒精发酵和巴斯德效应;乳酸发酵(同型和异性途径),线性和分支发酵途径的概念单位V光合作用 - 细菌和蓝细菌,光合色素 - 氧合(cyanobacterial)和无氧和无氧,紫色,绿色,绿色细菌)照片。 氮代谢概述氮循环。 建议的读数微生物生长的测量。批次,连续和同步培养,数字生长,环境因素对生长的影响(温度,pH,溶质,水活动,氧气和压力)。III单元碳水化合物代谢 - EMP,ED,五肽磷酸盐途径,TCA循环,有氧呼吸,氧化磷酸化,电子转运链(原核生物和真核),底物水平磷酸化。厌氧呼吸。解偶子和抑制剂。单位IV厌氧呼吸,特别参考异化硝酸盐还原(反硝化;硝酸盐/硝酸盐和硝酸盐/氨/氨呼吸;发酵硝酸盐还原)。发酵 - 酒精发酵和巴斯德效应;乳酸发酵(同型和异性途径),线性和分支发酵途径的概念单位V光合作用 - 细菌和蓝细菌,光合色素 - 氧合(cyanobacterial)和无氧和无氧,紫色,绿色,绿色细菌)照片。氮代谢概述氮循环。建议的读数
图1来自DEL MAR和SMM800的甲烷渗氧化甲烷的厌氧甲烷氧化活性。原位AOM指标和CH 3 D速率测量值表征低到高AOM活性碳酸盐。a)渗透碳酸盐收集站点Del Mar(浅绿色标记)和圣莫尼卡Mound 800(SMM800,深绿色标记)位于相距129公里。从Google Maps获得的地图。b)生物地球化学渗透碳酸盐设置。c)c)del mar露头,R1和R2的原位图像起源于顶部,R3和R4,从较近的沉积物。d)R9,来自附近的Del Mar区域,硫化垫有氧化垫。e)烟囱和f)原塑料是两个类似化学的结构,是从圣莫尼卡丘800的不同侧收集的。烟囱恢复后用甲烷积极冒泡。对于比例尺,图像中的红色激光点相距29厘米。g)基于:CH 3 D + SO 4 2-HCO 3- + HS- + HDO,在与单氧化甲烷的缺氧孵育中测量的厌氧甲烷激活率(NMOL D CM -3 D -1)。我们在五个时间点上测量了水的ΔD,除非另有说明,否则从线性增加的速率计算了速率。错误条显示了从线性回归计算出的K的标准误差。分别将带有不同颜色的R9,R9.1和R9.2的两个子样本孵育为AOM速率。无法重建用于费率的R9件的方向。在最后一个时间点(T4)硫化物进行测量,并在R9.1,Chimlet顶部,中间,底部和原子质表面中检测到。在检测下,冲浪。*在T4上仅检测到背景高于背景的氘,表明R2和R3。,B.D。的非线性增加。表面,int。内部,BTM。底部
sensabac-DHC - 厌氧脱氯培养物,用于LCC地下水损伤产品Sensabac-DHC的生物学培养物是实验室富集的微生物培养物,其中含有含有该物种的Dehalococcoides McCartyi,并具有高还原性的LCC降低潜力。实践经验表明,在自然条件下和生物刺激条件下,地下水中通常在地下水中积累了大量积累。生物提示可确保在厌氧条件下这些LCC成分也可以快速有效地处理。应用生物强调适用于在自然条件下无法检测到LCC降解的地点,或者尽管在地下水中有适当的环境条件和基板供应,但在自然条件下未检测到LCC降解。使用生物调节培养物是有效的,在它们已经有足够的环境和有利的辅助基板供应的情况下,地下水中的辅助基板供应有效。如果条件尚不适合生物提高,则通常可以通过添加适当的底物来提前调整这些条件。使用的脱氯培养物来自具有强烈的脱氯和降解相关酶TCEA,VCRA和BVCA的高基因拷贝数。一旦下达订单,准备了用于相应现场应用的尺寸的生物鼓声解决方案,并在实验室中孵育数周。培养物受环境条件和微生物生长反应的持续监测。通过QPCR分析进行质量控制,以评估TCEA,VCRA和BVCA的基因拷贝数,以确保生物学培养具有所需的降解潜力。一旦达到了相应的高基因拷贝数,就可以使用培养物,并在厌氧条件下渗入地下水中的地下水。
在经济学方面,开发300个新项目将产生大约8,000个新工作岗位和约3.4B美元的资本部署。产生有意义的影响将需要在全国范围内将这些操作部署在大规模上,并且在AD达到到期水平之前,还有很多工作要做。,但凭借其雄心勃勃的政策,纽约 - 能源视觉的家乡可以领导指控,证明能源愿景总裁Matt Tomich。AD是一个复杂的生物学过程,但Digester Doc和首席执行官Valkyrie Analytics的Charlton简单地解释了该概念的要旨:“碳不消失;它采取了不同的形式。它作为二氧化碳,土壤中的碳或生物物质存在。话虽如此,如果我们将通过AD捕获的能量转换为甲烷,我们会防止在将材料应用于土地或其他地方时发生的排放。,而消化池内部甲烷的碳越多,排放量就越少。”随着技术的发展,它会提供改进,包括更熟练的碳转换过程多年来,该行业已将转化效率从30%或35%提高到65%或70%。排放率的捕获率现在为99.9%,进一步提高了结果。仍然,鉴于有机材料的数量和多样性,这些系统只能独自完成。另一个现实是,AD留下了需要辅助处理方法的消化后残留物。堆肥已成为一种互补的后端技术,进入了众人瞩目的焦点。农业部门越来越多地转向AD。在现场应用之前堆肥消化固体实际上进一步减少了甲烷排放。在她的团队的多项研究中,正在评估消化酸盐应用对土壤过程,作物生产和环境的影响。,虽然堆肥在支撑较小的系统方面非常有用,但具有较大操作的热解或气化可能会更好,并且可以将固体和碳转化为各种产品。“因此,根据您的使用方式,有不同的解决方案,”他说。奶农尤其是发现,通过将肥料作为原料提供,他们可以产生额外的收入,更可持续地管理大量的牛便便,并最终减少其碳足迹。在纽约,通过报告的计算,将大约260个新广告带到奶牛场可以将甲烷从粪便中减少56.5%。作为其潜在价值作为原料获得更多的识别性粪便是一个不断增长的研究兴趣,一个目标是弄清楚如何开发具有成本效益的治疗方法以提高其生物降解性和沼气生产率。加州大学戴维斯分校教授兼空中质量专家Frank Mitloehner说,尽管已经研究了许多治疗方法,但经济学却阻碍了商业化的进展。尽管他和他的同事们参与了表现出希望的项目;他指出了涉及土地应用的堆肥肥料的工作。在其他领域正在进行研究,从自动化到改善沼气生产到多年生草作为原料的潜力。
Dave Parry 博士因在废水、生物固体和能源领域提供行之有效的创新解决方案而享有国际声誉。他在规划、设计、研究以及为废水处理、固体处理和能源项目提供建设和运营援助方面拥有 40 年的经验。他曾担任厌氧消化、共消化、热解、气化和燃烧研究的首席研究员。他曾担任水环境研究基金会共消化项目和环境安全技术认证计划的首席研究员,展示了美国空军将食物垃圾转化为燃料的过程。Parry 博士曾担任水环境联合会残留物和生物固体委员会生物能源技术小组委员会主席。他是已出版的 WEF/EPA/WERF 固体工艺设计和管理手册中关于厌氧消化章节的主要作者。他撰写并发表了 50 多篇技术论文,并就废水资源回收、固体处理、厌氧消化和能源管理举办了许多研讨会。
Specifically, Ms. Gauntner discusses the changes to the Residential and Non-Residential Tariffs (together, the “Tariffs”) and Small Scale Solar Rules and Solar (Greater Than 25kW), Wind, Hydro and Anaerobic Digester Rules (together, the “Rules”) that serve to: (1) add Large- Scale Solar classes to the Non-Residential Tariff and the Solar (Greater Than 25kW), Wind, Hydro和厌氧消化器规则; (2)澄清性能的非住宅关税语言保证中等太阳能的扩展名; (3)添加有关提交评估者地图的太阳能(大于25kW),风,水和厌氧分解酯规则的其他要求。
摘要人类肠道菌群在出生后立即形成,对宿主的健康很重要。在第一个日子里,师生的细菌种类通常占主导地位,例如肠杆菌科。这些由严格的厌氧物种(尤其是双杆菌种类)继承。早期过渡到双杆菌物种与健康益处有关;例如,双杆菌物种抑制病原竞争者的生长并调节免疫反应。替代多杆菌被认为是由于辅助厌氧菌(包括肠杆菌科)在新生儿中存在于新生儿中的氧氧氧气所致。为了研究过渡到双杆菌物种的氧气耗竭,我们在这里引入了一个多尺度数学模型,该模型考虑了代谢,空间细菌种群动力学和交叉进食。使用Agora Collection的公开代谢网络数据,该模型从头开始模拟了严格和某些厌氧物种在肠道和氧气影响下的肠道状环境中的竞争。该模型预测,新生婴儿的殖民地内氧的个体差异可以解释观察到的与厌氧物种,尤其是双杆菌物种的术中观察到的个体变异。双杆菌种类通过使用双杆分流器在模型中变为模型,这使双杆菌可以切换为次优屈服代谢,并在高乳糖浓度下快速生长,如此处使用液压平衡分析。因此,计算模型使我们能够检验婴儿结肠中细菌定植和继承的假设的内部合理性。
预期用途 液体巯基乙酸盐培养基是一种用于无菌控制和培养苛刻厌氧和需氧微生物的液体培养基。 描述 液体巯基乙酸盐培养基是一种通用液体培养基,用于培养和分离苛刻厌氧和需氧微生物。它也可用作无菌测试的增菌培养基。该培养基符合美国药典 (USP)、欧洲药典 (EP) 和日本药典 (JP) 中统一方法的要求以及 ISO 7937 分离产气荚膜梭菌的要求。典型配方* (g/l) 酪蛋白酶解物 15.0 酵母提取物 5.0 葡萄糖 5.5 氯化钠 2.5 巯基乙酸钠 0.5 L-胱氨酸 0.5 刃天青 0.001 琼脂 0.75 最终 pH 值为 7.1 ± 0.2(25°C)