基板厚度 6.1 简介................ ............. 6-1 6.2 带宽定义。6.3 根据测量结果确定带宽 6.4 计算薄天线元件的阻抗带宽。6.5 计算厚天线元件的带宽.... 6.6 结果与讨论 6.7 结论
此外,铝还可用于制造薄膜晶体管 (TFT)、光电探测器、太阳能电池和许多其他设备 [3]。由于铝易于沉积、表面电阻低,并且能够引入背面场效应 (BSF),从而最大限度地降低设备背面的载流子复合率,因此在太阳能电池制造中被广泛用作背接触 [4,5]。在太阳能电池中,铝触点的高反射特性可用作光捕获解决方案,其中低能光子将被倾斜反射回吸收层。这增加了设备中光(光子)的光路长度,从而提高了薄膜太阳能电池的吸收效率、光电流产生和量子效率,特别是在长波长区域 [6]。
从 X 射线衍射实验中观察到,基材上固化的聚酰亚胺薄膜的取向使得酰亚胺链优先沿薄膜的平面方向排列。对于具有刚性棒状聚酰亚胺的薄膜,薄膜取向尤其突出,并且随着薄膜厚度的增加而显着降低。涂层厚度对聚酰亚胺薄膜取向和有序性的影响在纯均苯四甲酸二酐-对苯二胺 (PMDA-PDA) 薄膜中最为明显,在含有 50% 均苯四甲酸二酐-4,4'-二苯氧基二苯胺 (PMDA-ODA) 和 50% PMDA-PDA 的薄膜中略小,而在含有 100% PMDA-ODA 的薄膜中相对不明显。根据傅里叶变换红外衰减全反射光谱实验的C=O和C-N拉伸吸收带,位于薄膜中心附近的酰亚胺分子表现出比靠近表面的酰亚胺分子更差的结构有序性。这揭示了为什么随着薄膜厚度的增加,平均薄膜取向会降低,相应的热膨胀系数会增大。
缩写:A F,凋亡水分;空气,酒精不溶性残留物; a n,叶净CO 2同化率; c * ft,叶子面积特异性电容; ETR,电子传输速率; f ias,叶叶叶的一部分细胞间空间; G M,叶叶叶电导至CO 2扩散; G S,气气体传导到气体扩散; l Betchl,叶绿体之间的距离; l chl,叶绿体长度; n pal,帕利塞德层的数量; R光,线粒体非呼吸呼吸速率; RWC TLP,在Turgor损失点处的相对水含量; S c / s,叶绿体表面积暴露于单位(一侧)叶子表面积的细胞间空间; S C / S M,叶绿体表面积暴露于单位叶肉表面积暴露于细胞间空间的细胞间空间; S m / s,叶肉表面积,分为每单位(一侧)叶子表面积的细胞间空间; t chl,叶绿体厚度; T CW,细胞壁厚度; T细胞,细胞质厚度; t le,表皮较低; t叶,叶子厚度; t mes,叶肉厚度; T pal,帕利塞德叶肉厚度; t spo,海绵状的叶肉厚度; T ue,上表皮厚度; Wue,用水效率; ε,弹性的散装模量; πo,全毛的叶子渗透势; ψmd,中午叶水电势; ψPD,黎明前的叶水电势; ψtlp,在库尔戈尔损失点处的叶子潜力。©作者2020。由牛津大学出版社出版,代表实验生物学学会。保留所有权利。有关权限,请发送电子邮件:journals.permissions@oup.com
simba浮标档案馆(data.seaiceportal.de)>> 100个部署/存档的浮标2012 - 2023NH&SH(多数北极;马赛克)漂移,温度和加热温度数据直到最近才一致的厚度数据
在河流、湖泊和水库的冰面上工作的人经常需要一种可以方便地测量冰层厚度的仪器。安全可能是最重要的考虑因素。此外,通过一种可以方便快速地测量冰厚度的仪器,可以加强对冰塞形成过程或冰层对河流湖泊或水库生态影响的科学研究。目前,可以通过钻孔并用某种形式的钩形计测量厚度来可靠地确定冰厚度。但是,此过程要求个人冒险在可能“太薄”而无法进行测量的冰面上进行测量。对于在一个区域上进行多次厚度测量,表面钻孔将成为一个耗时的过程。
(注) (1) 在锚链舱底板上表面垂直上方 3m 范围内,应在板面增加 1.0mm。(2) 仅适用于以露天甲板为舱顶的舱。3m 距离应垂直于舱顶并平行于舱顶测量。舱底水舱、排泄储罐和锚链舱应视为“其他位置”。 (3) 干散货舱包括用于载运干散货的舱。(4) 对于矿砂船,仅适用于垂直上方内底板 3mm 范围内。如果垂直上方内底板超过 3m,则视为 1.0mm。(5) 舱壁用板材在内底板垂直上方 3mm 范围内应加厚 0.2mm。(6) 吸入口附近的内底板和吸入井应在距吸入口外周约一个纵向间距半径范围内加厚 2.0mm(见图3.3.4-1 和 3.3.4-2)。(7) 对于装有气体燃料舱的舱室,应采用与同类型液化气船货舱相同的防腐措施。(8) 空隙处所是指只能通过螺栓人孔开口进入的处所或通常无法进入的处所,例如管隧。封闭型柱的内部空间也包括在内。(9) 干燥处所是指机器处所、泵舱、储藏室、操舵装置处所等的内部空间。(10) 主机舱内底板厚度应增加 2.0mm,除非根据事先提交的数据经本船级社批准实施防腐保护。
贸易和物流成本上升加剧了缅甸的粮食不安全状况。运输和物流在保障粮食安全方面的关键作用在于它们能够促进粮食供应并确保家庭能够获得粮食,而这需要通过适当的基础设施、储存解决方案和可靠的运输服务来实现(Pinto 等人,2023 年)。由于交通中断影响了农产品和其他食品的供应链,缅甸的粮食安全变得越来越脆弱。受影响最严重的地区是缅甸北部和西部,包括实皆、马圭、钦邦、若开邦、克耶邦、克伦邦、克钦邦和掸邦。全国范围内,粮食不安全状况加剧,导致近年来最严重的人道主义危机,约 1290 万人受到影响(WFP,2024 年)。