粘附需要分子接触,并且天然粘合剂采用机械梯度来实现完整(共形)接触以最大程度地提高粘附力。直觉上,人们期望顶层的模量越高,粘附强度越低。然而,僵硬顶层的厚度与粘附之间的关系尚不清楚。在这项工作中,我们量化了在软聚聚二甲基硅氧烷(PDMS)弹性体的厚度变化厚度的刚性玻璃状聚(PMMA)层之间的粘附。我们发现,在加载循环中,仅需要≈90nm厚的PMMA层才能将宏观粘附降低至几乎为零。可以使用Persson和Tosatti开发的保形模型来解释双层的粘附下降,在该模型中,创建保形接触的弹性能量取决于双层的厚度和机械性能。更好地理解机械梯度对粘附的影响将对粘合剂,摩擦以及胶体和颗粒物理学产生影响。
摘要:已经进行了研究,以分析和表征十种3D打印材料作为肺部器官的潜在放射性幻象。使用FDM型3D打印机打印了PLA,ABS,臀部,碳,碳,尼龙,TPU,PETG和木材的八种细丝,并使用SLA型3D打印机打印了两个树脂,PLA树脂和可洗的树脂。幻影的厚度变化为3 mm,6毫米和9毫米。8参数用于获得最佳材料,即材料密度,CT数,电子密度(NE),有效电子密度(EDG),每体积的电子密度(EDV),有效原子数(Zeff),材料成分元素和弹性模量。基于比较8个参数的值,用作肺部器官幻象材料的最可能是PLA。关键字:3D打印机,细丝,放射学,幻影,肺部[2023年11月7日收到;修订了2024年1月29日; 2月1日,2024年2月1日]印刷ISSN:0189-9546 |在线ISSN:2437-2110
s Grigg,C A Featherston,M Pearson和R Pullin Cardiff工程学院,加的夫大学,皇后建筑,游行,加的夫,CF24 3AA摘要。声发射(AE)是一种原位结构性健康监测(SHM)技术,在该技术中,由于裂纹生长而产生的超声波监测结构。将AE应用于飞机和其他复杂结构时,AE的主要挑战是,波传播会受到加强剂,孔,厚度变化和其他复杂性的显着影响。这降低了基于奇异传播波速的传统源位置技术的准确性。Delta-T方法通过映射结构并考虑这些更改来实现更高级别的准确性。在这项工作中,AE监视设备安装在铝空客A320机翼的一部分上。位置试验显示,与商业标准技术相比,人工HSU-Nielson来源的Delta-T技术将平均误差从85mm提高到23mm。在疲劳下进行测试证明了检查3D结构(由于多个信号路径)具有显着水平的背景噪声时遇到的挑战。在结构中鉴定出的两个裂纹中,其中第一个被成功地检测到并找到,而另一个由于高机噪声和无代表性的负载而错过了。
研究了通过定向能量沉积获得的打印 316L 不锈钢薄壁结构的机械性能。对从增材制造的方形管中获得的小样品进行现场拉伸和断裂试验,并以相对于部件构建方向的三个不同方向提取。尽管该工艺产生了强取向的微观结构,但与文献中常见的厚样品或抛光样品相比,打印样品表现出降低的各向异性。此外,使用一个简单的模型表明,通过仅考虑材料厚度变化模式(由层堆叠过程引起)可以解释降低的各向异性。使用经过调整的数字图像相关程序分析断裂试验,该程序根据实验计算的 J 积分评估样品的断裂韧性。使用时间反转,可以识别靠近裂纹路径区域的应变场。然后根据拉伸试验中确定的本构行为计算应力场。提出了一种正则化程序来强制应力平衡。最后,使用各种积分轮廓计算 J 积分,以验证其路径独立性。在此基础上,确定了近乎各向同性的断裂韧性。额外的扫描电子显微镜观察表明,断裂表面特征与样品方向无关。这种明显的各向同性可以通过驱动裂纹萌生和扩展的未熔合缺陷的各向同性分布来解释。
后减薄是半导体制造中器件制造和先进封装的关键部分。当由于处理困难导致最终晶圆厚度变得非常薄(比如 <100µm)时,载体支撑晶圆减薄就具有吸引力。减薄后处理(沉积、化学机械抛光 [CMP]、键合等)也受益于刚性和热机械稳定的支撑结构。为了实现最终晶圆的非常低的总厚度变化 (TTV),载体晶圆和临时键合材料(通常是粘合剂层)都必须提供足够低的 TTV。载体晶圆还必须具有合适的热膨胀系数 (CTE)。在本文中,我们介绍了一种玻璃载体解决方案和临时键合方法,它们结合起来可实现低 TTV 晶圆减薄。使用直径 150mm 的单晶钽酸锂晶圆进行可行性演示,仅通过晶圆研磨即可减薄 5µm。
摘要 碳复合材料因其特殊性能而应用于各个行业,尤其是航空航天工业。广泛使用的碳纤维增强聚合物 (CFRP) 甚至已应用于飞机主要结构。开发能够轻松检测和识别碳纤维材料退化的先进诊断技术仍然是各种无损检测方法面临的挑战。本文介绍了应用涡流 (EC) 检测碳复合材料结构的可能性。开发并测试了两种类型的涡流探头,并获得了优异的结果。新的传统涡流探头能够可靠且轻松地检测表面和地下不连续性,例如分层和厚度变化。针对不同类型的碳复合材料(基质和增强材料类型、铺层)描述了探头设置参数。精确的设置对于成功的涡流检测必不可少。经确定,对于样品,可靠检测的最小表面缺陷尺寸为 Ø1.5 mm,并且根据碳复合材料的类型,涡流能够穿透厚度高达约 4 mm。此外,本文还介绍了涡流检测与超声相控阵法 (PAUT) 的比较。复合材料飞机结构很容易受到通常使用 PAUT 检测的冲击损伤。因此,冲击数据的灵敏度和分辨率分析
本文中的摘要考虑了受静态负载的层状外壳。Reissner – Mindlin理论的位移充满了另一部分。这些所谓的波动位移包括翘曲位移和厚度变化。它们导致材料变形梯度和绿色 - 拉格朗日菌株张量的其他术语。在非线性多场变异配方中,边界价值问题的弱形式说明了应力结果的平衡和夫妇结果,应力的局部平衡,几何范围方程和组成型方程。对于独立壳菌株,选择具有二次形状函数的ANSATZ。这导致了显着改善的收敛行为,尤其是对于扭曲的网格。通过静态冷凝消除元素水平上的一组参数可产生元素刚度矩阵和四边形壳元素的残留载体,并具有通常的5或6个节点自由度。考虑到几何非线性,开发的模型在分层壳中产生复杂的三维应力状态,具有弹性和弹性性。与完全3D解决方案相比,呈现2D壳模型仅需要一定数量的计算时间。
本文参考改进的耦合应力理论和欧拉-伯努利梁理论,研究了带有可移动附着质量的微梁的自由横向振动响应。这是一个适用于生物和生物医学应用的良好模型,有利于早期诊断人体器官和酶的疾病和功能障碍。微悬臂梁由功能梯度材料 (FGM) 组成。材料特性应该显示与定律幂一致的梁厚度变化。采用瑞利-里兹法探索前三种振动模式的固有频率。为了证明所提方法的准确性,建立了结果并将其与技术文献并列。考虑了捕捉尺寸依赖性的材料长度尺度参数、梁质量与附着质量质量之比以及梯度材料的功率指数对系统振动行为的影响。本技术研究指出了材料级配以及附着质量的惯性在生物微系统动态行为中的重要性。因此,采用合适的功率指数、质量比和附着质量的位置可以设计出更优的生物微系统,以进行早期诊断。
摘要:必须保证在完整的终生中保证锂离子电池的安全性,考虑到由可逆和不可逆的膨胀和降解机制引起的几何变化。对压力分布和梯度的理解是为了优化电池模块的必要条件,并避免局部退化承受与安全相关的电池变化的风险。在这项研究中,用300或4000 n的初始预紧力测量了两个新鲜锂离子袋细胞的压力分布。四个相同的细胞用300或4000 N预紧力在电化学上老化。在衰老期间测量了不可逆的厚度变化。衰老后,研究了可逆的肿胀行为,以得出关于压力分布如何影响衰老行为的结论。开发了一种新型的测试设置,以测量局部细胞厚度,而无需接触并高精度。结果表明,施加的预紧力影响了细胞表面的压力分布和压力梯度。发现压力梯度会影响不可逆肿胀的位置。患有较大压力变化和梯度的位置在厚度上有很大增加,并且在其可逆的肿胀行为方面受到影响。尤其是,所研究的细胞的边缘显示由压力峰引起的厚度较强。
抽象断层区域展示了3D可变厚度,该特征仍然不足,特别是在对流体流动的影响方面。分析分析溶液后,我们通过基准实验检查了3D热氢(Th)动力学模型,该实验结合了一个断层区,其厚度变化对应于逼真的数量级。这些发现强调了一个关注区域,其中剧烈对流驱动流体流动,导致在断层区最厚的部分的浅深度下,温度升高到150°C。此外,通过考虑3D热氢化机械(THM)模型中的各种构造制度(压缩,延伸和滑行)模型,并将其与基准测试实验进行比较,我们观察到在感兴趣的面积内作用于流体流动的流体压力引起的流体压力变化。这些构造引起的压力变化会影响区域的热分布和温度异常的强度。这项研究的结果强调了孔弹性驱动力对转移过程的影响,并强调了将断层几何形状作为关键参数的重要性,这是对破裂系统中流体流量的未来研究。此类研究在地热能,CO 2存储和矿藏中具有相关的应用。