肥厚性心肌病(HCM)是由编码结构性肉类蛋白的基因中的常染色体示例突变引起的,是最常见的遗传性心脏病。HCM与心肌肥大,纤维化和心室功能障碍有关。缺氧诱导的转录因子1α(HIF-1α)是细胞缺氧反应的中心调节剂,与HCM相关。但其确切的作用仍有待阐明。因此,在已建立的α-MHC 719/+ HCM小鼠模型中研究了心肌细胞特异性HIF-1A敲除(CHIF1AKO)的影响,该模型表现出人类HCM的经典特征。结果表明,HIF-1α蛋白和HIF靶标在α-MHC 719/+小鼠的左心室组织中上调。心肌细胞特异性的HIF-1A的特异性消除使疾病表型钝化,这是左心室壁厚减小,心肌纤维化降低,SRX/DRX状态和ROS产生的降低所证明的。chif1ako在α-MHC 719/+小鼠的整个转录组和蛋白质组学分析中诱导了肥厚和纤维化的左心室重塑信号的归一化。来自早期HCM患者的血清样品的蛋白质组学显示HIF的显着调节。 这些结果表明HIF信号与小鼠和人类HCM发病机理有关。 HIF-1A的心肌细胞特异性敲除可减轻小鼠模型中的疾病表型。 靶向HIF-1α可能是减轻HCM疾病进展的治疗选择。来自早期HCM患者的血清样品的蛋白质组学显示HIF的显着调节。这些结果表明HIF信号与小鼠和人类HCM发病机理有关。HIF-1A的心肌细胞特异性敲除可减轻小鼠模型中的疾病表型。 靶向HIF-1α可能是减轻HCM疾病进展的治疗选择。HIF-1A的心肌细胞特异性敲除可减轻小鼠模型中的疾病表型。靶向HIF-1α可能是减轻HCM疾病进展的治疗选择。
Chai A.C.,Cui M.,Chemello F.,Li H.,Chen K.,Tan W.等。 (2023)。 人类心肌细胞和人源化小鼠中肥厚性心肌病的基础编辑校正。 自然医学,29(2),401-411 [10.1038/s41591-022-02176-5]。Chai A.C.,Cui M.,Chemello F.,Li H.,Chen K.,Tan W.等。(2023)。人类心肌细胞和人源化小鼠中肥厚性心肌病的基础编辑校正。自然医学,29(2),401-411 [10.1038/s41591-022-02176-5]。
肥厚性心肌病(HCM)是由肉瘤蛋白变异引起的心脏遗传疾病,破坏了心肌功能,导致超收缩,肥大和脂质。最佳心脏功能依赖于控制薄和厚的纤维蛋白的精确配位,这些蛋白质控制了时间,细胞力的产生和放松的幅度,以及体内收缩和舒张功能。肉瘤蛋白,例如心脏肌球蛋白结合蛋白C(CMYBP-C)通过调节肌动蛋白相互作用,在心肌收缩功能中起着至关重要的作用。CMYBP-C中的遗传变异是HCM的常见原因,强调了其在心脏健康中的重要性。本综述探讨了HCM和HCM转化研究的迅速前进的分子机制,包括针对肌节功能的基因疗法和针对小分子的干预措施。我们将重点介绍新的方法,包括使用重组AAV载体和针对肌节功能的小分子药物的基因治疗。
南亚印度人中临床可操作的肥厚性心肌病基因 Vinay J Rao a,b ,理学硕士,Thiagarajan Sairam a ,哲学博士,Andiappan Rathinavel c ,MCh,,Kurukkanparampil Sreedharan Mohanan d ,医学博士,Hisham Ahamed e ,医学博士,Jayaprakash Shenthar f ,医学博士,Perundurai S Dhandapany a,* ,哲学博士。a 心血管发育和疾病机制,干细胞科学和再生医学研究所(DBT-inStem),班加罗尔,印度。b 跨学科健康科学与技术大学,Yelahanka,班加罗尔,印度。c 心血管胸外科系,马杜赖医学院和政府 Rajaji 医院,马杜赖,印度。d 心脏病学系,政府医学院,科泽科德,印度。 e 肥厚性心肌病中心,Amrita 医学科学院,Amrita Viswa Vidyapeetham(Amrita 大学),印度科钦。f 心脏病学系,Sri Jayadeva 心血管科学与研究研究所,印度班加罗尔。* 联系人:Perundurai S Dhandapany;dhan@instem.res.in 摘要背景:原发性肥厚性心肌病 (HCM) 主要是遗传性疾病,在没有其他心脏和全身代谢疾病的情况下导致左心室肥大。目前,关于南亚印度人 (SAI) 中原发性 HCM 临床可操作基因变异的流行率的数据有限,这对于尽量减少对祖先特异性变异的解释差异是必要的。目的:ClinGen 遗传性心血管疾病 (HCVD) 基因管理专家小组根据临床相关性将 HCM 致病基因分为五类:明确、强、中等、有限和有争议。然而,缺乏对 SAI 中这种分类的全面研究。方法:对 335 名原发性 SAI-HCM 患者进行全外显子组测序,包括所有已知的心血管基因和临床可操作的基因类别,以确定它们的等位基因频率。结果:SAI-HCM 外显子组在 335 例中的 119 例 (35.52%) 中揭示了 26 个临床可操作基因中总共 194 个 P/LP 和 VUS。与其他全球 HCM 队列相比,SAI-HCM 队列在 12 个明确类别基因中表现出的变异明显较少(17.33% vs. 41.21%,P = 0.0003)。对于 5 个强/中等基因,SAI-HCM 队列与其他全球 HCM 队列之间无显著差异(2.59% vs. 2.49%,P = 1)。在 21 个有限且有争议的基因中,MYH6 在 SAI-HCM 队列中的变异流行率明显高于其他全球 HCM 队列(5.07% vs. 1.67%,P = 0.0408)。
结果:在 6045 名患者和 1159 种独特的肌节基因变异中,发现了 12 种 LowSV。LowSV 在一般人群中很常见(1:350),在 HCM 中适度富集(总比值比,14.9 [95% CI,12.5–17.9])。单独的 LowSV 与 HCM 诊断年龄较大和不良事件较少有关。然而,LowSV 与致病性肌节变异相结合会导致更高的发病率(例如,综合不良事件风险比,5.4 [95% CI,3.0–9.8] 对比单一致病性肌节变异,2.0 [95% CI,1.8–2.2];P <0.001)。已验证 2 个特定 LowSV 的中等功能影响——MYBPC3 c.442G>A(部分剪接增益)和 TNNT2 c.832C>T(对收缩力学的中等影响)。对普通人群的心脏磁共振成像分析显示,12 个 LowSV 中有 5 个与 HCM 邻近特征显着相关,但无明显 HCM。
Raymond H. Chan,医学博士,MPH; Laurine van der Wal,医学博士;医学博士Gabriela Liberato;医学博士Ethan Rowin;乔纳森·索斯洛(Jonathan Soslow),医学博士;医学博士Shiraz Maskatia;医学博士Sherwin Chan;医学博士Amee Shah;马克·福格尔(Mark Fogel),医学博士;医学博士Lazaro Hernandez;医学博士Shafkat Anwar; Inga Voges,医学博士;马库斯·卡尔森(Marcus Carlsson),医学博士; Sujatha Buddhe,医学博士;医学博士Kai Thorsten Laser;医学博士Gerald Greil; Emanuela ValsangiaComo-Buechel,医学博士; Iacopo Olivotto,医学博士;医学博士Derek Wong;马里兰州柯卢拉·沃尔夫(Cordula Wolf); Heynric Grotenhuis,医学博士;医学博士Carsten Rickers;医学博士Kan Hor;医学博士Tobias Rutz;医学博士谢尔比·库蒂(Shelby Kutty);玛格丽特·萨明(Margaret Samyn),医学博士;蒂法尼·约翰逊(Tiffanie Johnson),医学博士;医学博士Keren Hasbani;杰里米·P·摩尔(Jeremy P. Moore),医学博士;马里兰州Ludger Sievering;乔恩·德特里奇(Jon Deetterich),医学博士;罗德里戈·帕拉(Rodrigo Parra),医学博士;马里兰州Paweena Chungsomprysong;医学博士Olga Toro-Salazar; Arno A. W. Roest,医学博士; Sven Dittrich,医学博士;亨里克·布伦(Henrik Brun),医学博士;约瑟夫·斯宾纳(Joseph Spinner),医学博士; Wyman Lai,医学博士; Adrian Dyer,医学博士;罗伯特·贾布洛诺夫斯克(Robert Jablonowsk),医学博士; Christian Meierhofer,医学博士; Dominik Gabbert博士;米兰PRSA,医学博士; Jyoti Kandlikar Patel,医学博士;医学博士Andreas Hornung;医学博士Simone Goa Diab;马里兰州Aswathy Vaikom House;医学博士Harry Rakowski;医学博士Lee Benson;马里·马龙(Martin S. Maron),医学博士; Lars Grosse-Wortmann,医学博士 div>Raymond H. Chan,医学博士,MPH; Laurine van der Wal,医学博士;医学博士Gabriela Liberato;医学博士Ethan Rowin;乔纳森·索斯洛(Jonathan Soslow),医学博士;医学博士Shiraz Maskatia;医学博士Sherwin Chan;医学博士Amee Shah;马克·福格尔(Mark Fogel),医学博士;医学博士Lazaro Hernandez;医学博士Shafkat Anwar; Inga Voges,医学博士;马库斯·卡尔森(Marcus Carlsson),医学博士; Sujatha Buddhe,医学博士;医学博士Kai Thorsten Laser;医学博士Gerald Greil; Emanuela ValsangiaComo-Buechel,医学博士; Iacopo Olivotto,医学博士;医学博士Derek Wong;马里兰州柯卢拉·沃尔夫(Cordula Wolf); Heynric Grotenhuis,医学博士;医学博士Carsten Rickers;医学博士Kan Hor;医学博士Tobias Rutz;医学博士谢尔比·库蒂(Shelby Kutty);玛格丽特·萨明(Margaret Samyn),医学博士;蒂法尼·约翰逊(Tiffanie Johnson),医学博士;医学博士Keren Hasbani;杰里米·P·摩尔(Jeremy P. Moore),医学博士;马里兰州Ludger Sievering;乔恩·德特里奇(Jon Deetterich),医学博士;罗德里戈·帕拉(Rodrigo Parra),医学博士;马里兰州Paweena Chungsomprysong;医学博士Olga Toro-Salazar; Arno A. W. Roest,医学博士; Sven Dittrich,医学博士;亨里克·布伦(Henrik Brun),医学博士;约瑟夫·斯宾纳(Joseph Spinner),医学博士; Wyman Lai,医学博士; Adrian Dyer,医学博士;罗伯特·贾布洛诺夫斯克(Robert Jablonowsk),医学博士; Christian Meierhofer,医学博士; Dominik Gabbert博士;米兰PRSA,医学博士; Jyoti Kandlikar Patel,医学博士;医学博士Andreas Hornung;医学博士Simone Goa Diab;马里兰州Aswathy Vaikom House;医学博士Harry Rakowski;医学博士Lee Benson;马里·马龙(Martin S. Maron),医学博士; Lars Grosse-Wortmann,医学博士 div>
•HCM是最常见的遗传性心脏疾病。•通常以常染色体优势模式继承,但不需要HCM的家族史。•许多人不知道自己拥有它或携带遗传易感性。•HCM可以以不同程度的严重程度显示出大不相同的表现,即使在同一家族的成员中也是如此。•某些HCM的情况是非孟德尔式的,可能是由多基因风险等位基因和非遗传因素(例如老年,高血压,代谢综合征和肥胖症)组合而产生的。•人们在休息时可能是非刺激性的,但会因运动而变得阻碍性,因此,作为常规评估的一部分,患者进行运动压力超声心动图很重要。•有各种表型和结构性亚型可以为遗传风险和治疗提供依据。•儿童和成人患者之间的SCD风险分层存在重要差异。
通讯:MBBS,医学博士Juan Pablo Kaski,儿科遗传和罕见的心血管疾病中心,伦敦大学学院和大奥蒙德圣科医院,伦敦WC1N 1DZ,英国。电子邮件j.kaski@ucl.ac.uk *g。 Captur,I。Doykov和S.-C。 Chung是第一作者†K。Mills和J.P. Kaski是最后一位作者。补充材料可在https://www.ahajournals.org/doi/suppl/10.1161/circgen.123.004448获得。有关资金和披露的来源,请参见第265页。©2024作者。循环:沃尔特·克鲁维尔·健康公司(Wolters Kluwer Health,Inc。这是根据Creative Commons归因许可条款的开放访问文章,该条款允许在任何媒介中使用,分发和复制,前提是适当地引用了原始作品。
肥厚性心肌病(HCM)是一种常见的猫心脏病,一生中影响了所有猫的15%。HCM。hcm是由某些猫品种中的基因突变引起的,或者被怀疑是由某些猫品种的基因突变引起的,但是在包括混合品种在内的所有猫,包括混合品种。用于HCM筛查的遗传测试可用于缅因州的Coon,狮身人面像和Ragdoll Cats。在HCM中,心肌松弛和收缩异常。这些异常可能会导致心脏心脏(顶部)心脏,充血性心力衰竭(CHF,肺部或胸腔中的液体),昏厥,心脏不规则心律和心脏内血液凝块的形成。在这种情况下也可能出现猝死。
•带有LOE C的建议并不意味着建议很弱。指南中解决的许多重要临床问题不适合临床试验。尽管RCT不可用,但可能有一个非常明确的临床共识,即特定的测试或治疗是有用或有效的。