产品特性 聚酰亚胺是一种强度和耐热性优异的超级工程塑料,其应用范围广泛,从电视、智能手机、汽车到航空航天。宇部兴产是全球唯一一家从原材料联苯四甲酸二酐 (BPDA) 到清漆、薄膜和粉末实现一体化生产的制造商。我们的原材料和专有的成型和加工技术使我们能够生产出具有竞争优势的产品。我们的聚酰亚胺在大型显示器的芯片薄膜 (COF) 应用中占有很高的市场份额,在柔性有机发光二极管基板的清漆中也占有很高的市场份额。我们还生产结合了聚酰亚胺中空纤维的气体分离膜(请参阅
Green Cross Health感谢有机会向药品分类委员会(MCC)第73届会议提供提交的机会。绿十字卫生卫生涵盖了整个新西兰的Unichem和Life Pharmacies。我们旨在通过授权我们的团队获得新的令人兴奋的机会,并为我们社区不断变化的需求提供服务,以支持药房专业。猕猴桃现在,随着新西兰的出发趋势和到达的趋势每年都在增加,而每年都在增加海外度假。随着旅行的增加,人们的需求是在旅行前就旅行健康和预防疫苗接种的建议。目前,社区中旅行疫苗的建议和管理障碍,尤其是在某些劳动力压力很大的地区。这些障碍可以使个人在海外旅行期间未接种疫苗和未受保护的人,有可能使他们生病,和/或将外来疾病带入新西兰。免受可预防疾病的保护不仅使个人受益,而且可以为该国带来经济利益,从而节省了治疗状况的时间和金钱,并减轻了已经伸展的健康劳动力的住院和负担。我们提出了几种在出国旅行前指示的几种疫苗的重新分类,以允许训练有素且有能力的疫苗接种药剂师咨询,建议和管理针对患者旅行目的的疫苗。为了清楚起见,尽管此提交中的所有疫苗都称为旅行疫苗,但MCC以前仅考虑过伤寒,日本脑炎和黄热病疫苗。其他疫苗,丙型肝炎,乙型肝炎和脊髓灰质炎疫苗可用于其他适应症,但是,出于这次提交的目的,我们只能在出国旅行之前与给药有关。拟议的重新分类将影响卫生部成功完成疫苗接种基金会课程(或同等课程)的疫苗接种者和药剂师,并持有批准的教育设施的相关研究生旅行医学资格。在需要特定培训的情况下,对于某些实时疫苗就是这样的情况,还将需要药剂师疫苗接种者来完成卫生部提出的必要培训,然后才被授权向公众提供实时疫苗。疫苗接种者还将遵守卫生部的免疫标准,以供疫苗的存储,分配和管理。COVID-19在监督下工作的疫苗接种者,实习药物疫苗接种者,临时疫苗接种者,临时药剂师疫苗接种者和疫苗接种卫生工作者被排除在此提议之外。
CO 2捕获,利用和存储(CCUS)技术是减轻温室气体排放的最有效的方法,吸引了全球相当大的关注。1,2 CCUS技术基于二氧化碳的捕获和分离。3要实现捕获和隔离二氧化碳的目的,膜分离已成为普遍的方法。该技术允许通过二氧化碳和膜之间的物理或化学相互作用选择性渗透二氧化碳。研究二氧化碳膜分离方法的研究围绕高效率膜的制备和获取。目前,经过广泛研究的CO 2分离膜包括无机,有机和新兴膜。无机膜主要由二氧化硅,沸石和石墨烯膜组成。有机膜包括纤维素,聚酰胺,多硫酮和聚醚膜。新兴膜包括复合材料,金属 - 有机框架(MOF),Zeolitic imidazo-late Framework(ZIF),碳分子筛(CMS),固有微孔(PIM)的聚合物(PIM)和促进的运输膜。具有低能消耗和高分离效率的显着优势,膜分离方法正在迅速出现,因为二氧化碳捕获和分离的全球前进技术。4
图1:Nafion N117(A,C)的电导率(A,B)和电解质质量分数(C,D)和烟雾E-620(B,D)在NaOH或KOH电解质中浸泡在Select浓度(MOH IN MOH代表Na或K)处的膜。在表S2和S3中将相应的数据表列出。
电阻器 作者:Christopher Henderson 本月,我们将继续我们的专题文章系列,讨论芯片电阻器。 芯片电阻器通常采用表面贴装封装。这些电阻器包含薄膜或厚膜。厚膜表面贴装电阻器可能在陶瓷基板上使用氧化钌,而薄膜电阻器可能在陶瓷基板上使用镍铬合金 (镍铬合金) 或氧化钽、镍铬合金、钽混合物。这些电阻器可能包含保护涂层,例如上釉或聚合物涂层。工程师通常会将这些电阻器调整为最终电阻值。为了将电阻器连接到电路,封装将包括由焊料制成的端子,焊料覆盖镍、银或用于与电阻膜接口的其他金属。镍是最佳选择,因为它有助于防止在焊接操作过程中界面金属的浸出,从而导致开路。图 1 显示了表面贴装芯片电阻器的横截面。电阻元件位于陶瓷基板上,末端带有端子,环绕陶瓷基板并接触电阻元件。将有保护性釉面或聚合物层覆盖电阻元件。
2+ - handling。据报道,肉瘤蛋白滴定在调节对心脏僵硬的收缩反应以及一个重要的治疗靶标中起着至关重要的作用,尤其是在保留射血分数(HFPEF)的HF中(2)。在生理环境下,α-肌球蛋白重链(α-MHC)尾巴与钛合金相关以制成厚的肌膜。厚肌膜的稳定结构对于维持心脏的正常结构和收缩功能至关重要。然而,决定肌球蛋白和钛合金之间结合的关键因素尚不清楚。在2019年,Zhao教授首先证明了乳酸介导的一种转化后修饰的一种乳酸化,在癌症代谢和免疫细胞中起着重要作用(3)。乳酸化也与血管功能,神经调节,缺氧,糖酵解和细胞代谢有很强的相关性。虽然乳酸曾经被认为是新陈代谢的副产品,但现在它作为能源的作用至关重要
通常的计算机断层扫描(CT)系统提供有关组成对象的材料的布局和性质的信息。但是,此信息仅限于材料的明显线性衰减µ。要以有效的原子数z eff和电子密度ρe的形式达到更精确和准确的描述,可以使用双能量成像。常规的双能计算机计算机(DECT)技术是:(a)进行预处理的双能数据集并执行常规CT重建[1],(b)重建双能量数据集并分析获得的线性衰减数据集的比例,并在A上进行了一定的材料[2,3]和(C)[2,3],3]和(C) [4-6]。第二种技术相对方便地设置,但并非完全独立于能量。第三种技术已被证明相当有效;但是,它提出了一个用于分解的材料基础选择的问题。检查由大量不同材料组成的复杂物体时,此选择可能至关重要。因此,这项工作着重于将第一个技术扩展到高能,因为它不需要对材料进行任何假设,并通过系统频谱响应考虑了光束硬化效应。DEV源通常是X射线管,将诊断能范围限制在几百kV中。对于大而厚的物体,必须具有等效的X射线衰减,高达1 m的混凝土,高能(> 6 mV)的扫描仪是强制性的。[1]和Azevedo等。[7]需要扩展。在这样的能量下,E + E - 对生产优先于光电效果,而Alvarez等人启动了双能分解的工作。由于E + E - 对生产横截面𝜎 𝜎没有分析公式,该模型以第二阶多项式𝑔𝑔()的形式将贡献与原子数Z分开,并从能量E分开,并提出了第三阶多项式𝑔𝑃𝑃()和第三阶多项式1𝑓(and)。