髓母细胞瘤是儿童中最常见的恶性肿瘤脑肿瘤,是导致肿瘤形成的失调发育机制的范式(Marino 2005)。它分为四个亚组(SHH,Wnt,G3和G4),每个子组进一步细分为亚型。已经确定了这些祖细胞的基本信号传导路径的放松调节,这些祖细胞的基本信号通路是综述的(有关审查,请参阅Marino和Gilbertson 2021)。在大脑中,原发性纤毛 - 基于微管的细胞结构,固定在基底体上,该结构用作纤毛微管组装的温度(Larsen等人2013) - 对其发展至关重要。它们从细胞的表面伸出,感知多个信号,并引入基本信号通路,包括关键的发育途径Sonic Hedgehog(SHH)和Wnt。例如,纤毛在SHH驱动的前脑图案中起着关键作用,包括中间神经元的迁移;在小脑发育中,特别是小脑祖细胞的扩张;在海马神经发生中2019)。Wnt介导的树突状细化和海马中成年牙齿颗粒细胞中的突触形成也是由Cilia进行的(Kumamoto et al。2012)。原发性纤毛在包括髓母细胞瘤在内的各种脑肿瘤的发病机理中被认为(Han等人2009),脉络丛 - 美国肿瘤(Li等人2016)和胶质母细胞瘤(Goranci-Buz-Hala等人2021);但是,其角色的机械基础刚刚开始揭露。
CRISPR 介导的原代人类淋巴细胞基因组编辑通常通过电穿孔进行,这可能具有细胞毒性、繁琐且成本高昂。本文我们展示了通过递送与筛选确定的两亲肽混合的 CRISPR 核糖核蛋白可以大幅提高编辑后的原代人类淋巴细胞的产量。我们通过递送 Cas9 或 Cas12a 核糖核蛋白或腺嘌呤碱基编辑器敲除 T 细胞、B 细胞和自然杀伤细胞中的基因来评估这种简单递送方法的性能。我们还展示了肽介导的核糖核蛋白递送与腺相关病毒介导的同源定向修复模板配对可以在 T 细胞受体 α 恒定位点引入嵌合抗原受体基因,并且工程细胞在小鼠中表现出抗肿瘤效力。该方法干扰最小,不需要专用硬件,并且与通过顺序递送的多重编辑兼容,从而最大限度地降低了基因毒性的风险。肽介导的核糖核蛋白细胞内递送可能有助于制造工程化 T 细胞。
胆囊癌(GBC)是最常见的原发性胆道癌(BTC),是致死率最高的恶性肿瘤之一,来源于胆囊或胆囊管。GBC占BTC的近三分之二,是第六大常见胃肠道癌症(1),具有生长迅速、致死率高的特点。在中国,GBC是第五大胃肠道癌症,高发年龄为50~75岁,女性发病率约为男性的2倍(2,3)。GBC起病隐匿,早期诊断困难,恶性程度高,易发生早期转移,因此GBC预后极差,大多数患者初次诊断时已属晚期,晚期GBC的5年生存率为5%~10%(4)。
。CC-BY-NC-ND 4.0 国际许可,未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者(此版本于 2020 年 7 月 1 日发布。;https://doi.org/10.1101/2020.07.01.183145 doi:bioRxiv 预印本
摘要:细胞分裂调节剂在神经祖细胞(NPC)增殖和分化中起着至关重要的作用。细胞分裂周期25C(CDC25C)是Cdc25磷酸酶家族的成员,通过激活细胞周期蛋白依赖性蛋白激酶(CDKS),可以正向调节细胞分裂。ever,被敲除cdc25c基因的小鼠被证明是可行的,由于cdc25a和/或cdc25b的遗传补偿而缺乏明显的表型。在这里,我们通过使用子宫电穿孔中的NPC中击倒CDC25C来研究CDC25C在发育大鼠大脑中的功能。我们的结果表明,CDC25C在维持皮质发育过程中NPC的增殖状态中起着至关重要的作用。CDC25C的敲低导致早期细胞周期出口和NPC的过早分化。我们的研究发现了CDC25C在NPC分裂和细胞命运确定中的新作用。此外,我们的研究还提出了一种研究基因作用的功能方法,该方法通过在体内敲除皮质神经发生中引起遗传补偿。
遗传改性细胞的基因分型是针对转基因和基因组编辑的至关重要的步骤,例如CRISPR/CAS等系统。检测基因组编辑事件可以与所使用的基因分型方法直接相关,该方法受其成本影响,因为许多实验需要分析大量样品。这项研究的目的是比较基因组DNA(GDNA)提取的直接裂解方法的性能,以检测原代山羊细胞中的敲蛋白和敲除。最初,使用差异量(1,000、5,000和10,000个细胞)和goat Ortiparts(fibroblblasts and fibroblblasts and gote anctermarem Migalsmary Migalmary Migalmary Migalmary Migatiars Migatiars Migatiars)测试了三种GDNA提取方案(方案A,水中的温度A; Prote变性/冻结;小(GAPDH)和大扩增子(HLF转基因)的PCR扩增。所有方案在检测小扩增子方面均成功;但是,在GMEC中,只有协议B仅导致有效的扩增(协议A - 0%,协议B- 93%,协议C- 13.33%,p <0.05)。In a proof- of-principle experiment, the TP53 gene was knocked out in GMECs by CRISPR/Cas9-medi- ated deletion while constructs containing the anti-VEGF monoclonal antibody (pBC-anti- VEGF) and bacterial L-Asparaginase (pBC-ASNase) transgenes were knocked-in sepa- rately in fibroblasts.使用协议B和PCR进行了成功编辑的检测。根据PCR,PBC-ASNase和PBC-Anti-VEGF转基因的整合速率分别为93.6%和72%。使用CRISPR/CAS9对TP53缺失在GMEC中的双重编辑效率为5.4%。我们的结果表明,方案B(热变性/蛋白酶K)可以用作一种廉价且快速的方法,用于检测不同类型的原代山羊细胞中的遗传修饰,其效率率与先前使用提取试剂盒或更复杂的蛋白酶K配方中先前描述的值一致。
摘要 使用 CRISPR-Cas9 对原代人类细胞进行基因组工程改造彻底改变了细胞生物学的实验和治疗方法,但人类髓系细胞在遗传上仍然难以治疗。我们提出了一种通过核转染将 CRISPR-Cas9 核糖核蛋白 (RNP) 复合物直接递送到从外周血纯化的 CD14+ 人类单核细胞中的方法,从而实现高精确基因敲除率。这些细胞可以有效分化为单核细胞衍生的巨噬细胞或树突状细胞。该过程产生的基因编辑细胞保留了髓系分化和吞噬功能的关键标记。限制因子 SAMHD1 的基因消融使 HIV-1 感染增加了 50 多倍,证明了该系统在基因型-表型查询方面的强大功能。这种快速、灵活且可扩展的平台可用于人类髓系细胞在免疫信号、炎症、癌症免疫学、宿主-病原体相互作用等方面的遗传研究,并可促进新型髓系细胞疗法的开发。简介髓系细胞是健康和疾病免疫系统中的关键参与者(Germic 等人,2019 年;Lapenna 等人,2018 年;Worbs 等人,2017 年)。单核细胞和巨噬细胞在先天免疫系统的直接分支中发挥作用,对病原体或组织损伤作出反应,并帮助调节和解决组织炎症。作为专业的抗原呈递细胞,树突状细胞可协调适应性免疫反应。鉴于髓系细胞的核心作用,髓系细胞被确定为从发育和稳态调节到病原体反应、自身炎症性疾病、纤维化和恶性肿瘤等各个方面的关键参与者也就不足为奇了 (Chao 等人,2020 年;Engblom 等人,2016 年;Manthiram 等人,2017 年;Medzhitov 和 Janeway,2000 年、1997 年;Wynn 等人,2013 年)。更好地了解这些细胞的正常行为和致病行为对于进一步加深我们对各种疾病的机制理解至关重要,为发现和发展新疗法带来了希望。我们识别新治疗靶点和构建新细胞干预措施的能力与我们对相关原代细胞类型的基因操作能力同步发展。例如,小鼠基因方法揭示了小鼠巨噬细胞的显著多样性,而骨髓亚群的基因消融为临床中类似细胞的治疗靶向铺平了道路(Wynn 等人,2013 年)。CRISPR-Cas9 介导的基因靶向显著扩展了曾经难以治疗的细胞类型的潜力,促进了重要的发现工作和增强的原代 T 细胞细胞治疗方法(Roth 等人,2018 年;Schumann 等人,2015 年;Simeonov 和 Marson,2019 年;Stadtmauer 等人,2020 年),以及使用编辑的造血干细胞/祖细胞治疗衰弱性遗传疾病(Foss 等人,2019 年;Wu 等人,2019 年)。到目前为止,CRISPR-Cas9 在原代人类髓系细胞中效率低下,限制了人类免疫系统这些关键细胞的功能遗传学研究和基因组工程。已鉴定出 SAMHD1 是髓系细胞中阻止有效慢病毒转导的关键限制因子(Hrecka 等人,2011 年;Laguette 等人,
CRISPR 基因编辑提供了前所未有的基因组和转录组控制,可精确调节细胞功能和表型。然而,将必要的 CRISPR 成分递送至治疗相关的细胞类型且不产生细胞毒性或意外副作用仍然具有挑战性。病毒载体存在基因组整合和免疫原性的风险,而非病毒递送系统难以适应不同的 CRISPR 载体,而且许多系统具有高度的细胞毒性。精氨酸-丙氨酸-亮氨酸-丙氨酸 (RALA) 细胞穿透肽是一种两亲性肽,它通过与带负电荷的分子的静电相互作用自组装成纳米颗粒,然后将它们递送到细胞膜上。与其他非病毒方法相比,该系统已用于将 DNA、RNA 和小阴离子分子递送至原代细胞,且细胞毒性较低。鉴于 RALA 的低细胞毒性、多功能性和有竞争力的转染率,我们旨在将这种肽建立为一种新的 CRISPR 递送系统,适用于各种分子格式,适用于不同的编辑模式。我们报告称,RALA 能够有效地封装 DNA、RNA 和核糖核酸蛋白 (RNP) 格式的 CRISPR 并将其递送至原代间充质干细胞 (MSC)。RALA 与市售试剂之间的比较表明,其细胞活力更佳,可导致更多的转染细胞并维持细胞增殖能力。然后,我们使用 RALA 肽将报告基因敲入和敲除到 MSC 基因组中,以及转录激活治疗相关基因。总之,我们将 RALA 确立为一种强大的工具,可以更安全有效地以多种货物格式递送 CRISPR 机制,用于广泛的基因编辑策略。
研究人员开发了具有越来越复杂和规模的神经系统的计算模型,通常情况下,从头开始模型的开发是不切实际且效率低下的。因此,迫切需要快速找到,评估,重复使用和建立其他研究人员开发的模型和模型组件。我们介绍了Neuroml数据库(Neuroml-db.org),该数据库已开发出来,以满足这一需求并汇总其他模型共享资源。Neuroml-DB存储以前已转换为模块化神经模型描述语言的离子通道,细胞和网络的1,500多个离子通道,细胞和网络模型。数据库还提供了与其他神经科学模型数据库(模型,开源大脑)的相互链接以及对原始模型出版物的访问(PubMed)。这些链接以及神经科学信息框架(NIF)搜索功能提供了与其他神经科学社区建模资源的深入集成,并极大地促进了寻找合适的重复使用模型的任务。作为一种中间语言,NeuroMl及其工具生态系统可以有效地翻译模型为其他流行的模拟器格式。模块化性质还可以有效地分析大量模型和对其性质的检查。数据库的搜索功能以及基于Web的可编程在线界面,使研究人员社区可以快速评估存储的模型电力学,形态和计算复杂性属性。此分析提供了有关模型相似性的进一步信息,以丰富数据库搜索。我们使用这些功能来对神经元和离子通道模型进行数据库规模分析,并描述由细胞模型簇在模型性能和f构图的空间中形成的新型四面体结构。
1 德克萨斯大学西南医学中心麻醉学和疼痛管理系;6202 Harry Hines Blvd.,9 楼,德克萨斯州达拉斯 75235。2 德克萨斯大学达拉斯分校神经科学系和高级疼痛研究中心,800 W Campbell Rd,Richardson,TX 75080,美国。3 西南移植联盟。8190 Manderville Ln,德克萨斯州达拉斯 75231,美国。4 圣路易斯大学药理学和生理学系,1402 S. Grand Blvd.,密苏里州圣路易斯 63104,美国。5 亚利桑那大学药理学系,1501 N Campbell Ave,亚利桑那州图森 85721,美国。 6 佛罗里达大学药理学和治疗学系,1200 Newell Drive,ARB R5-234 Gainesville,FL 32610-0267。 * 通讯作者:Amol Patwardhan 和 Theodore Price † 这些作者对本文的贡献相同