F. Volpi、C. Boujrouf、M. Rusinowicz、S. Comby-Dassonneville、F. Mercier 等人。集成原位扫描电子显微镜的多功能纳米压痕仪的开发 - 应用于监测压电响应和机电故障。《薄膜固体》,2021 年,735,第 138891 页。�10.1016/j.tsf.2021.138891�。�hal-03428537�
朱丽叶·夏本(Juliette Charbonnel),纳塔恰(Natacha Darmet),克莱尔·德里斯(Claire Deilhes),洛迪维奇·布奇(Lodivic Broche),城市雷蒂尔(City Reytier)等。全稳态蛋糕的安全评估:一种创新的方法论,它是一种使用situ synchrotrotron x射线广播的创新方法。ACS应用能源材料,2022,̿10.1021/acsaem.2C01514。̄̄̄2378188
朱丽叶·夏本(Juliette Charbonnel),纳塔恰(Natacha Darmet),克莱尔·德里斯(Claire Deilhes),洛迪维奇·布奇(Lodivic Broche),城市雷蒂尔(City Reytier)等。全稳态蛋糕的安全评估:一种创新的方法论,它是一种使用situ synchrotrotron x射线广播的创新方法。ACS应用能源材料,2022,̿10.1021/acsaem.2C01514。̄̄̄2378188
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
[a] MJSA Silva,G. Gasser 博士 Chimie ParisTech,PSL 大学,CNRS,生命与健康科学化学研究所,无机化学生物学实验室,F-75005 巴黎,法国 电子邮件:gilles.gasser@chimieparistech.psl.eu [b] MJSA Silva,PMP Gois 博士,葡萄牙里斯本大学药学院药物研究所(iMed.ULisboa)。电子邮件:pedrogois@ff.ulisboa.pt 摘要:金属基抗癌药物的开发受到阻碍,原因之一是它们对癌细胞缺乏选择性。在最近的一篇文章中,Zou 和同事们介绍了通过 Pd(II) 介导的金属转移成功在细胞内活化有机金 (I) 复合物以用于潜在的癌症治疗,克服了新型金基药物的一些脱靶活性。这种独特的策略在金属药物的使用和生物正交细胞内催化之间建立了完美的桥梁,以实现更先进、更具选择性的治疗。这种方法有望为未来的药物无机化学研究铺平道路。
图3•EE应激诱发的凋亡操纵癌细胞的免疫原性。(a)PEPA介导的内糖体应力的示意图调节了癌细胞的免疫原性。潮湿,损伤相关的分子模式。(B-E)蛋白质组学分析对用PEPA介导的EE或LY应激处理的CT26细胞释放的蛋白质水平。 (b)释放蛋白质的维恩图。 (c)PEPA EE应激专门引起的生物过程GO的富集。 (d)由PEPA介导的EE和LY应激诱导的释放蛋白的火山图。 (e)热图和pepa ee和pepa ly之间的蛋白质类型的聚类。 n = 3生物学独立的实验。 (f)用pepa ee或pepa ly胁迫处理后CT26细胞的钙网蛋白(CRT)暴露。 (g)与PEPA EE或PEPA LY处理过的CT26-ova细胞共培养后,在BMDC上,Cotimulation因子(CD80和CD86)(CD80和CD86)和OVA抗原(Siinfekl-h-2k b)的过表达。 通过流式细胞仪量化数据,并将其标准化为PBS治疗。 (h)用pepa ee或pepa ly应激处理的CT26- OVA肿瘤中GSDME裂解和caspase-3激活的免疫印迹。 (i)由pepa ee或pepa ly引起的肿瘤组织的免疫原性(TUNEL,CRT暴露和HMGB1释放)的全面成像。 比例尺= 2 mm。 (j,k)在用pepa ee或pepa ly处理后,从CT26-ova肿瘤小鼠收获的淋巴结中的体内DC激活和OVA的表现。 (J)CD80 + CD86 + DC细胞的百分比,n = 5小鼠。(B-E)蛋白质组学分析对用PEPA介导的EE或LY应激处理的CT26细胞释放的蛋白质水平。(b)释放蛋白质的维恩图。(c)PEPA EE应激专门引起的生物过程GO的富集。(d)由PEPA介导的EE和LY应激诱导的释放蛋白的火山图。(e)热图和pepa ee和pepa ly之间的蛋白质类型的聚类。n = 3生物学独立的实验。(f)用pepa ee或pepa ly胁迫处理后CT26细胞的钙网蛋白(CRT)暴露。(g)与PEPA EE或PEPA LY处理过的CT26-ova细胞共培养后,在BMDC上,Cotimulation因子(CD80和CD86)(CD80和CD86)和OVA抗原(Siinfekl-h-2k b)的过表达。通过流式细胞仪量化数据,并将其标准化为PBS治疗。(h)用pepa ee或pepa ly应激处理的CT26- OVA肿瘤中GSDME裂解和caspase-3激活的免疫印迹。(i)由pepa ee或pepa ly引起的肿瘤组织的免疫原性(TUNEL,CRT暴露和HMGB1释放)的全面成像。比例尺= 2 mm。(j,k)在用pepa ee或pepa ly处理后,从CT26-ova肿瘤小鼠收获的淋巴结中的体内DC激活和OVA的表现。(J)CD80 + CD86 + DC细胞的百分比,n = 5小鼠。(k)抗原阳性DC中的siinfekl显示,n = 4小鼠。(l)在不同治疗后(n = 5小鼠)后CT26-ova肿瘤轴承小鼠中的特定细胞杀死研究。(M)在用CT26细胞重新收集CT26肿瘤的PEPA EE或PEPA LY治疗的含有肿瘤的小鼠中。n = 6鼠;对数秩测试; wt- pepa ee与wt- pepa ly的p = 0.0061。所有数据均表示为平均值±S.D.,所有测量(N)在生物学上都是独立的。
图3•EE应激诱发的凋亡操纵癌细胞的免疫原性。(a)PEPA介导的内糖体应力的示意图调节了癌细胞的免疫原性。潮湿,损伤相关的分子模式。(B-E)蛋白质组学分析对用PEPA介导的EE或LY应激处理的CT26细胞释放的蛋白质水平。 (b)释放蛋白质的维恩图。 (c)PEPA EE应激专门引起的生物过程GO的富集。 (d)由PEPA介导的EE和LY应激诱导的释放蛋白的火山图。 (e)热图和pepa ee和pepa ly之间的蛋白质类型的聚类。 n = 3生物学独立的实验。 (f)用pepa ee或pepa ly胁迫处理后CT26细胞的钙网蛋白(CRT)暴露。 (g)与PEPA EE或PEPA LY处理过的CT26-ova细胞共培养后,在BMDC上,Cotimulation因子(CD80和CD86)(CD80和CD86)和OVA抗原(Siinfekl-h-2k b)的过表达。 通过流式细胞仪量化数据,并将其标准化为PBS治疗。 (h)用pepa ee或pepa ly应激处理的CT26- OVA肿瘤中GSDME裂解和caspase-3激活的免疫印迹。 (i)由pepa ee或pepa ly引起的肿瘤组织的免疫原性(TUNEL,CRT暴露和HMGB1释放)的全面成像。 比例尺= 2 mm。 (j,k)在用pepa ee或pepa ly处理后,从CT26-ova肿瘤小鼠收获的淋巴结中的体内DC激活和OVA的表现。 (J)CD80 + CD86 + DC细胞的百分比,n = 5小鼠。(B-E)蛋白质组学分析对用PEPA介导的EE或LY应激处理的CT26细胞释放的蛋白质水平。(b)释放蛋白质的维恩图。(c)PEPA EE应激专门引起的生物过程GO的富集。(d)由PEPA介导的EE和LY应激诱导的释放蛋白的火山图。(e)热图和pepa ee和pepa ly之间的蛋白质类型的聚类。n = 3生物学独立的实验。(f)用pepa ee或pepa ly胁迫处理后CT26细胞的钙网蛋白(CRT)暴露。(g)与PEPA EE或PEPA LY处理过的CT26-ova细胞共培养后,在BMDC上,Cotimulation因子(CD80和CD86)(CD80和CD86)和OVA抗原(Siinfekl-h-2k b)的过表达。通过流式细胞仪量化数据,并将其标准化为PBS治疗。(h)用pepa ee或pepa ly应激处理的CT26- OVA肿瘤中GSDME裂解和caspase-3激活的免疫印迹。(i)由pepa ee或pepa ly引起的肿瘤组织的免疫原性(TUNEL,CRT暴露和HMGB1释放)的全面成像。比例尺= 2 mm。(j,k)在用pepa ee或pepa ly处理后,从CT26-ova肿瘤小鼠收获的淋巴结中的体内DC激活和OVA的表现。(J)CD80 + CD86 + DC细胞的百分比,n = 5小鼠。(k)抗原阳性DC中的siinfekl显示,n = 4小鼠。(l)在不同治疗后(n = 5小鼠)后CT26-ova肿瘤轴承小鼠中的特定细胞杀死研究。(M)在用CT26细胞重新收集CT26肿瘤的PEPA EE或PEPA LY治疗的含有肿瘤的小鼠中。n = 6鼠;对数秩测试; wt- pepa ee与wt- pepa ly的p = 0.0061。所有数据均表示为平均值±S.D.,所有测量(N)在生物学上都是独立的。
1 1荷兰乌得勒支大学乌得勒支(IMAU),荷兰2号荷兰2号应用科学研究组织(TNO),荷兰乌得勒支台(Utrecht EMPA - 瑞士联邦材料科学技术实验室,瑞士杜宾多夫6大气与气候科学研究所,苏黎世,苏黎世,苏黎世,瑞士7 Deutsches zentrumfürluft- uft- und und und undraumfahrt(DLR) Carafoli” (INCAS), Bucharest, Romania 9 Scientific Aviation (SA) Inc., 3335 Airport Road Suite B, Boulder, Colorado 80301, United States a now at: Department of Renewable Energies and Environment, College of Interdisciplinary Science and Technologies, University of Tehran (UT), Tehran, Islamic Republic of Iran b now at: Earth Systems and Global Change, Wageningen University and Research(WUR),荷兰Wageningen C NOT:联合国环境计划(UNEP)国际甲烷排放天文台(IMEO),法国巴黎,法国,1荷兰乌得勒支大学乌得勒支(IMAU),荷兰2号荷兰2号应用科学研究组织(TNO),荷兰乌得勒支台(Utrecht EMPA - 瑞士联邦材料科学技术实验室,瑞士杜宾多夫6大气与气候科学研究所,苏黎世,苏黎世,苏黎世,瑞士7 Deutsches zentrumfürluft- uft- und und und undraumfahrt(DLR) Carafoli” (INCAS), Bucharest, Romania 9 Scientific Aviation (SA) Inc., 3335 Airport Road Suite B, Boulder, Colorado 80301, United States a now at: Department of Renewable Energies and Environment, College of Interdisciplinary Science and Technologies, University of Tehran (UT), Tehran, Islamic Republic of Iran b now at: Earth Systems and Global Change, Wageningen University and Research(WUR),荷兰Wageningen C NOT:联合国环境计划(UNEP)国际甲烷排放天文台(IMEO),法国巴黎,法国,
克莱尔·哈德森(Clare Hudson)。一种简单的方法,可以在原位杂交后在神经板阶段识别海腹脑谱系细胞。Simon G. Sprecher。大脑发育。方法和协议,施普林格,第325-345页,2020年,《分子生物学中的方法》,978-1-4939-9731-2。10.1007/978-1-4939-9732-9_18。hal-02322828
摘要流量参数的准确测量通常取决于传感器的可访问性。光流评估技术,例如粒子图像速率(PIV)和粒子跟踪速度计(PTV),仅限于光学上透明的介质。但是,许多工业过程都涉及不透明的媒体,需要采用替代方法。本研究介绍了X射线粒子跟踪速度法(XPTV)的开发和应用,以研究此类介质中的流量。具体来说,检查了融合细丝制造(FFF)打印机的喷嘴内的流量。这项工作的新贡献是使用XPTV对加热流进行的首次分析,通过在聚合物流中引入钨粉作为对比剂来实现。该研究成功地可视化了抛物线速度曲线,证明了该方法的功效。