NSCLC。由于靶向疗法主要用于治疗转移性疾病患者,因此快速检测这些变异可能会加快有症状且需要最有效疗法的患者的治疗决策。检测此类变异的准确性和可行性一直具有挑战性。由于担心组织耗竭,不建议通过多个独立的单基因检测(例如免疫组织化学和荧光原位杂交 (FISH))进行常规检测。下一代测序 (NGS) 面板(理想情况下包括基于 RNA 的组件)通常是首选,因为它们可以评估所有相关突变的存在,并且比多个单基因测试更具成本效益。9 – 12 然而,较长的周转时间(2 – 4 周)削弱了它们在必须及时做出患者管理决策的情况下的临床价值。在这些情况下,强烈需要快速准确的检测,并且组织要求最少。主要使用原型试剂盒的超快速基因融合检测的 Beta 测试报告显示了令人鼓舞的准确性结果。13 – 15 在当前的研究中,我们使用制造的试剂盒评估了这种最近上市的检测的临床实用性。我们测试了其准确性、组织接受度和检测限,以捕获涉及 ALK、ROS1、RET、NTRK1/2/3 基因和 MET 外显子 14 跳跃变异的临床相关基因融合。
Comprehensive Assay v3 panel (Thermo Fisher Scientific) 如前所述 ( 4 )。鉴定出 EML4::NTRK3 基因融合(EML4 外显子 2-NTRK3 外显子 14),并通过荧光原位杂交 (FISH) 分析(使用 ZytoLight SPEC NTRK3 双色分离和 ZytoLight SPEC EML4 双色分离)(图 2B、C)和使用 panTRK 抗体 (Roche) 的免疫组织化学染色(图 2D)进行确认。对患者匹配的正常组织进行的相同 OCAv3 NGS 分析未检测到种系改变。基于这些发现,开始使用恩曲替尼。避免全脑放射治疗,因为患者没有神经系统症状,没有脑 MR 水肿的证据,脑病变的数量不支持使用立体定向放射外科治疗,并且文献数据表明恩曲替尼可以穿过血脑屏障。屏障。治疗开始后两个月进行的 PET 扫描(图 3)和脑部 MR 显示部分反应。治疗目前正在进行中。最近进行的脑部 MR 和 PET 扫描记录了完全的放射学消退。图 4 为患者临床病史的摘要。
染色体鉴定在细胞遗传学研究中至关重要。在现代植物育种中需要有关细胞遗传学性状,基因组大小和核DNA含量确定的知识。这项研究的目标是检查染色体计数,染色体核形态学特征,5s和18s rDNA基因座分布,染色体长度,丝粒位置,基因组大小以及2C-DNA的含量以及2C-DNA的含量,可加州群岛,网状和HAMI。三种瓜品种分别有24个染色体,而哈密瓜,Netted和Hami Melons的总染色体长度分别为28.5、34.05和35.02 µm。荧光原位杂交表明,这三个品种有两个5S rDNA位点,哈密瓜和哈米瓜有四个18S rDNA基因座,而净瓜有6个18S rDNA基因座。通过流式细胞术证实了三个瓜的2C DNA含量。估计的DNA含量分别为1.15 pg,1.18 pg和1.11 pg,分别为Netted和Hami Melon。这项研究的发现将为所检查的瓜品种提供进一步的细胞遗传学研究,并促进改善的育种计划。
图 1 对所研究的七种肿瘤类型的 ErbB 家族成员基因扩增和蛋白质表达进行研究。(A)HER2 /CEP17 比率的分布。使用 DDISH 确定儿童肿瘤样本 (n = 297) 中的 HER2 扩增。如果 HER2 /CEP17 比率 ≥ 2,则 HER2 DDISH 状态定义为阳性。(B)H 分值分布,代表 EGFR、HER2、HER3 和 HER4 的表达。通过 IHC 确定 EGFR、HER2、HER3 和 HER4 的表达。七种肿瘤类型的表达均以 H 分值表示。CEP17,17 号染色体的着丝粒探针;DDISH,双半抗原原位杂交;DIPG,弥漫性内在性脑桥神经胶质瘤;EGFR,表皮生长因子受体;EP,室管膜瘤;HGG,高级别神经胶质瘤; H 评分、Hirsch 评分;HER、人类表皮生长因子;HER2、HER 受体 2;HER3、HER 受体 3;HER4、HER 受体 4;IHC、免疫组织化学;MB/PNET、髓母细胞瘤/原始神经外胚层肿瘤;NB、神经母细胞瘤;RLGA、复发性低级别星形细胞瘤;RMS、横纹肌肉瘤
摘要 神经垂体 (NH) 位于垂体后叶,是一种主要的神经内分泌组织,它通过将神经激素催产素 (OXT) 和精氨酸加压素 (AVP) 从脑释放到外周血液循环中来介导渗透平衡、血压、生殖和哺乳。NH 的主要细胞成分是下丘脑轴突末端、有孔内皮细胞和垂体细胞,即常驻星形胶质细胞。然而,尽管 NH 具有生理重要性,但定义神经垂体细胞类型特别是垂体细胞的确切分子特征仍不清楚。使用单细胞 RNA 测序 (scRNA-Seq),我们在成年雄性小鼠的 NH 和中叶 (IL) 中捕获了七种不同的细胞类型。我们发现了新的垂体细胞标记物,其特异性比以前报道的更高。生物信息学分析表明垂体细胞是一种星形胶质细胞类型,其转录组与伸长细胞相似。单分子原位杂交揭示了主要细胞类型的空间组织,暗示了细胞间通讯。我们提供了神经垂体细胞类型的全面分子和细胞表征,可作为进一步功能研究的宝贵资源。
酵母人工染色体(YAC)为隔离和映射哺乳动物染色体的区域提供了强大的工具。,我们通过通过同源重组将救援质粒插入YAC载体中的DNA片段开发了一种快速有效的方法来分离代表YAC克隆极端的DNA片段。构建了两个救援载体,其中包含一个酵母Lys2可选基因,一个细菌的复制起源,一个抗生素耐药基因,一个包含多个限制位点的聚链链接和与PYAC4载体同源的片段。“终端克隆”程序涉及将救援载体转化为带有YAC克隆的酵母细胞,然后制备酵母DNA并转化为细菌细胞。所得质粒的长度最高20 kb,可用作杂交探针,作为直接DNA测序的模板,以及作为荧光原位杂交绘制的探针。这些向量适合从使用PYAC衍生载体构建的任何YAC中拯救端键。我们通过从人类YAC图书馆中拯救Yac-end片段来证明这些质粒的实用性。
项目 确定斑马鱼受伤后控制心脏成功再生的机制 描述 心脏的再生能力在动物界中差异很大。包括人类在内的哺乳动物在心脏受伤(心脏病发作)后再生反应较差。因此,由于缺乏直接针对受伤原因的治疗,患者常常会出现并发症。另一方面,斑马鱼在受伤后表现出非凡的自然再生心脏的能力。因此,通过确定驱动积极再生反应的斑马鱼因素和机制,我们可以潜在地利用这些知识并将其应用于表现出较差再生反应的动物,以新疗法和新疗法的形式。在这个项目中,我们将结合基因操控和先进的实时成像技术来识别和控制心脏再生过程中重要的细胞潜在因素。因此,该项目将为单个细胞内以及细胞之间的复杂相互作用提供新的见解,以成功完成再生。技术 克隆、免疫荧光、RNA 原位杂交、基因操作(RNA、crispr、tol2、突变体、转基因)、斑马鱼处理、活体共聚焦成像 参考文献 doi: 10.1126/science.abo6718 doi: 10.1242/dev.199740 doi: 10.1016/j.ydbio.2020.12.004 联系方式 Phong NGUYEN 遗传学和发育生物学 UMR3215/U934 单位 电子邮箱:phong.nguyen@curie.fr 电话:+33 (0) 156246897 网站:htps://insutut-curie.org/equipe/nguyen
摘要我们先前已经描述了在成年爪诺司纳布斯Laevis神经系统中仅表达的几个基因的分离,并在神经诱导后不久在胚胎中激活。这些cDNA的一个24-15的序列将相应的蛋白质识别为(Na',K+-ATPase的3个亚基[ATP磷酸化水酶(Na+/ K+-transporting); EC 3.6.1.37]。这种形式与先前所描述的(31个爪蟾亚基)不同,蛋白质序列比较表明它不是哺乳动物的青蛙同源物(82个亚基;因此,我们将24-15蛋白称为(na',na',k+-Atpase的33个亚基。抗血清针对(83个亚基融合蛋白检测到成人脑提取物中的蛋白质,其大小和特性是Na',K+-ATPase(3个亚基。在Xenopus中(31和33个亚基表示为相似水平的母体mRNA;在胚胎发生期间快速积累(33个mRNA在第14阶段开始(早期神经拉拉),快速积累(31个mRNA在阶段开始,在23/24阶段。反义RNA探针与t骨脑切片的原位杂交表明(33个亚基在整个发育中的大脑中表达。我们建议(33是主要的Na',K+-ATPase(在青蛙早期神经系统发育过程中存在8个亚基。
摘要:枯萎综合征(WS)是一种严重的影响鲍鱼haliotis spp。的疾病,是由细胞内人力体类似生物体(WS -RLO)感染引起的。疾病的诊断通常依赖于组织学检查和分子方法的组合(原位杂交,标准PCR和序列分析)。但是,这些技术仅提供对细菌负荷的半定量评估。我们创建了一个实时定量PCR(QPCR)测定法,以根据16S rDNA基因拷贝数识别和枚举鲍鱼组织,粪便和海水样品中WS-RLO的细菌载荷。旨在检测WS-RLO DNA的QPCR分析是根据世界动物健康组织设定的标准验证的。从纯化的质粒稀释液中得出的标准曲线是在7个浓度对数中线性的,效率为90.2%至97.4%。每个反应的检测极限为3个基因拷贝。诊断灵敏度为100%,特异性为99.8%。QPCR分析是巨大的,其高度可重复性和可重现性证明了这一点。这项研究首次表明可以在鲍鱼组织,粪便和海水样品中检测和定量WS-RLO DNA。在各种材料中检测和量化RLO基因拷贝拷贝的能力将使我们能够更好地了解养殖和自然环境中的传输动力学。
摘要 人类免疫缺陷病毒 1 型 (HIV-1) 感染对其人类宿主具有高度特异性。为了研究 HIV-1 对人类神经系统的感染,我们建立了一种小动物模型,其中将妊娠中期 (11 至 17.5 周) 的人类胎儿大脑或神经视网膜移植到免疫抑制成年大鼠的前房。人类异种移植血管化,形成血脑屏障,并分化形成神经元和神经胶质细胞。异种移植感染了无细胞 HIV-1 或 HIV-1 感染的人类单核细胞。聚合酶链反应分析显示,暴露于 HIV-1 病毒体的异种移植组织的 DNA 中存在 HIV-1 序列,原位杂交显示 HIV-1 mRNA 位于巨噬细胞和多核金细胞中。仅在含有 HIV-1 感染的人类单核细胞的神经异种移植中观察到病理损伤,支持了这些细胞介导神经毒性的假设。这种小动物模型可用于研究 HIV-1 感染对正在发育的人类胎儿神经组织的直接和间接影响,并且应可用于评估最终必须针对大脑 HIV-1 感染的抗病毒疗法。