摘要 青霉病是影响大蒜采后的主要病害之一。2023年,该病害在泰国清迈府的大蒜[Allium ampeloprasum var. ampeloprasum (Borrer) Syme]采后储藏期间被发现。从大蒜中分离得到3个真菌分离株,根据形态特征和核糖体DNA内部转录间隔区(ITS)、β -微管蛋白(BenA)、钙调蛋白(CaM)和RNA聚合酶II第二大亚基(rpb2)基因组合序列的系统发育分析,鉴定为大蒜青霉菌(Penicillium allii)。在致病性测定中,接种分离真菌的大蒜表现出与采后储藏期间观察到的症状相似的症状。在杀菌剂筛选试验中,多菌灵、苯醚甲环唑 + 嘧菌酯和苯醚甲环唑在半剂量和推荐剂量下均能有效完全抑制该真菌,而该真菌对克菌丹和代森锰锌不敏感。此外,多菌灵、氧氯化铜、苯醚甲环唑与嘧菌酯的组合以及苯醚甲环唑单独使用时,双倍推荐剂量可完全抑制该真菌。据我们所知,这是泰国首次报道由 P. allii 引起的大蒜鳞茎采后蓝霉病。此外,杀菌剂敏感性筛选的结果有助于制定有效的管理策略,以控制由 P. allii 引起的大蒜鳞茎采后蓝霉病。
b'Summary抗菌抗菌潜力(EOS)(Basil,Ginger,Hyssop,Caraway,Juniper和Sage)针对三种食物传播细菌病原体,通常是肉类产物污染物(Escherichia Coli,Salmonella enterica enterica and interica enterica and salmonella interica interica interica monicution in Discogen iles),并使用二张蛋白质差异,并使用了二氧化草含量,并使用了二张蛋白质差异。通过气相色谱 - 质谱法(GC-MS)技术确定EOS组成。分析的EO中的主要化合物为:雌激素(在Basil EO中),顺式Pinocamphone(在Hyssop EO中),-pinene(在杜松EO中),-thujone(在Sage EO中),Carvone(Carveone EO)(Caraway EO)和Curcumene(在Ginger Eo中)。罗勒EO抑制了所有测试细菌的生长(椎间盘扩散法)。测试的姜EO浓度缺乏杀菌活性。只有罗勒EO对单核细胞增生李斯特氏菌生长显示抑制作用。与所有经过测试的EO相比,Caraway EO在大肠杆菌和肠肠链球菌上具有最高的抗菌作用。对于所有测试细菌,罗勒和鼠尾草EOS的最小抑制浓度(MIC)为56.8 \ XC2 \ XB5L/ML。Hyssop,香菜和杜松EOS在所有测试的细菌物种上以113.6 \ XC2 \ XB5L/ml的浓度抑制。对于大肠杆菌和L.单核细胞增生剂,生姜EO的MIC为113.6 \ XC2 \ XB5L/ML,而S. enterica则为227.3 \ XC2 \ XB5L/ml。对于所有研究的细菌,罗勒和鼠尾草EOS的最小bacte- ricidal浓度(MBC)为113.6 \ xc2 \ xb5l/ml。Hyssop,Caraway和Juniper EOS的MBC的MBC为所有投资细菌的227.3 \ XC2 \ XB5L/ML。对于大肠杆菌和L.单核细胞增生菌,XC2 \ XB5L/ML为227.3 \ XC2 \ XB5L/ML,而S. enterica则为454.5 \ XC2 \ XB5L/ML。测试的EO具有巨大的抗细菌防腐剂的潜力。”
森林是巨大陆地生态系统和水生生物多样性的潜在栖息地,在生态保护和气候调节中发挥着重要作用。人类对森林的压力导致森林消失、破碎化和退化。在气候变化制度下,可持续的森林保护方法的要求是重中之重。在林木中,杨树 (Populus L.) 在全球林业中引起了关注,因为它是改善城市景观质量和数量的有前途的材料。这些植物提供的木材可用作造纸业的原材料和潜在的生物燃料来源。然而,一些生物胁迫,如害虫和病原体的侵袭,严重影响杨树的生产和生产力。由于杨树的生命周期长,缺乏具有抗性基因的合适供体,通过传统的树木育种方法对杨树的改良受到限制。由于杨树具有高效的遗传转化能力,它已被用作研究基因功能的模型植物。本综述将全面概述杨树受到的害虫和病原体的侵袭,重点介绍其感染机制、传播途径和控制策略。此外,还将研究最广泛使用的遗传转化方法(基因枪介导、农杆菌介导、原生质体转化、micro-RNA 介导和 micro-RNA 成簇的规律间隔短回文重复序列 (CRISPR) 相关 (CRISPR-Cas) 系统方法和 RNA 干扰),以提高杨树对害虫和病原体的耐受性。此外,还将深入探讨分子生物学工具的前景、挑战和最新进展,以及它们在遗传转化以提高杨树抗虫害能力的安全应用。最后,讨论了通过各种基因工程技术开发的抗性转基因杨树的再生。
Phi-Base 5网站上的软件开发工作由Molecular Connections Pvt Ltd(印度班加罗尔)提供。Phi-canto策划工具是与剑桥大学的Pombase团队合作开发的,金·卢瑟福(Kim Rutherford)提供软件开发和Val Wood提供了有关新策展过程的咨询和培训。由Incatools开发的本体论开发试剂盒的协助,由Upheno Project与Nico Matentzoglu协商(Sentancicly Ltd,曾经是EMBL-EBI)协商,由Upheno Project开发的统一表型本体学的开发。基因本体论的编辑者,尤其是Pascale Gaudet(瑞士 - 普罗特,瑞士生物信息学研究所),开发了新的本体论术语,以协助Phi-Base中病原体 - 霍斯特过程的策划。自2011年以来,Phi-base数据已在每个Ensembl释放中托管。Phi-Canto和Phipo的开发是由英国生物技术与生物科学研究委员会(BBSRC)(BB/S020020/1)资助的。PHI-BASE的持续发展目前由Rothamsted Research的两个学院战略计划提供资金:增长健康(BB/X010953/1; BBS/E/E/RH/230003A)并提供可持续的小麦(BBS/E/E/RH/230001B)。
仅研究使用。不适用于诊断程序。©2024加利福尼亚州的太平洋生物科学(“ PACBIO”)。保留所有权利。本文档中的信息如有更改,恕不另行通知。PACBIO对本文档中的任何错误或遗漏不承担任何责任。某些通知,条款,条件和/或使用限制可能与您使用PACBIO产品和/或第三方产品有关。请参阅适用的PACBIO销售条款和条件以及PACB.com/license的适用许可条款。太平洋生物科学,PACBIO徽标,PACBIO,Circulomics,Omniome,Smrt,Smrtbell,Iso-Seq,Secel,Sequel,Nanobind,sbb,Revio,Revio,Onso,Apton,Apton,Kinnex和Puretarget是Pacbio的商标。
2. 6 种或以上呼吸道病原体的多重 PCR 面板检测不予报销。 3. 脑脊液(CSF)病原体的多重 PCR 面板检测不予报销。 4. 血液病原体的分子检测面板检测不予报销。 5. 用于诊断尿路感染的尿液病原体的分子检测面板检测(例如 GENETWORx 分子 PCR UTI 检测)不予报销。 6. 用于筛查或诊断伤口感染的分子面板检测(例如 GENETWORx PCR 伤口检测)不予报销。 7. 用于微生物一般筛查的分子面板检测(例如 MicroGenDX qPCR+ NGS)不予报销。 政策指南
如果您的样本产生了强劲的阳性结果,则数据解释不需要内部提取控制,并且可以忽略。如果您的样品产生了负结果,则内部提取控制对于解释结果很有用。内部提取控制中的CQ值会根据样品中的DNA量而有所不同。晚期信号(CQ> 28)表明您的样品中只有少量的宿主衍生DNA。您可能希望重复样本收集,然后重复测试以确认负面结果。
此预印本版的版权持有人于2024年11月27日发布。 https://doi.org/10.1101/2024.11.26.625556 doi:biorxiv Preprint
M. genitalium 是一种细胞内泌尿生殖道革兰氏阴性烧瓶状细菌,属于柔膜纲支原体科。它是最小的柔膜纲(直径 0.2 µm),缺乏编码细胞壁的基因,导致其寄生和腐生。M. genitalium 没有细胞壁,而是拥有一个三层膜,其中含有从环境中吸收的固醇。M. genitalium 使用 UGA 密码子而不是终止密码子来编码色氨酸。M. genitalium 代谢葡萄糖。这种内部病原体在含有胎牛血清的培养基中生长得更好。在 SP4 培养基中,M. genitalium 在 50 天后产生具有“煎蛋”外观的菌落。通过添加 0.25 mg/ml 环丙沙星以减少其他微生物的污染,生长速度加快至 14 天。