1) 慕尼黑工业大学生物资源化学系,生物技术与可持续发展校区,Schulgasse 16, 94315,施特劳宾,德国 2) 伦斯勒理工学院生物技术与跨学科研究中心,特洛伊,纽约 12180,美国 3) 伦斯勒理工学院化学与生物工程系,特洛伊,纽约 12180,美国 4) 弗劳恩霍夫 IGB,施特劳宾分会 BioCat,Schulgasse 23, 94315,施特劳宾,德国 5) TUM 催化研究中心,Ernst-Otto-Fischer-Straße1, 85748,加兴,德国 6) 昆士兰大学化学与分子生物科学学院,68 Copper Road,圣卢西亚,4072,澳大利亚 7) 分子微生物学与生物研究所德国明斯特大学生物技术系,Corrensstrasse 3, 48149 Münster,
本文考虑了4轮Keccak -224/256/384/512在量子环境下的抗原像性。为了有效地找到原像的旋转对应项对应的旋转数,我们首先建立一个基于Grover搜索的概率算法,利用某些坐标上比特对的固定关系来猜测可能的旋转数。这致力于实现每次搜索旋转对应项的迭代只包含一次用于验证的4轮Keccak变体运行,这可以降低量子环境下的攻击复杂度。在可接受的随机性下寻找旋转数的基础上,我们构建了两种攻击模型,专注于原像的恢复。在第一个模型中,Grover算法用于寻找原像的旋转对应项。通过64次尝试,可以获得所需的原像。在第二个模型中,我们将寻找旋转对应体抽象为在超立方体上寻找顶点,然后使用SKW量子算法来处理寻找作为旋转对应体的顶点的问题。对轮数减少的Keccak进行量子原像攻击的结果表明,第一个攻击模型对于4轮Keccak -224/256/384/512优于一般的量子原像攻击,而第二个模型对于4轮Keccak -512/384的攻击效果略低但更实用,即该模型比我们的第一个攻击模型和一般的量子原像攻击更容易在量子电路中实现。
人工智能的发展和使用”,2023年。10。30, (https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/e xecutive-order-on-the-safe-secure-and-trustworthy-development-and-u se-of-artificial-intelligence/, 2023.12。22。접속)。3)国会。4)国会。Gov,“ S.1865-标签法”。5)国会。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月13日。 https://doi.org/10.1101/2025.01.13.632720 doi:Biorxiv Preprint
摘要经常暴露于外国核酸,细菌和古细菌已经开发出一种巧妙的适应性防御系统,称为CRISPR-CAS。该系统由群集的定期间隔短的短质重复序列(CRISPR)阵列以及与CRISPR(CAS)相关基因组成。该系统由一种复杂的机械组成,该机制将病毒和移动遗传元素(MGE)的外国核酸碎片整合到CRISPR阵列中。插入的片段(垫片)被转录,然后被CAS蛋白用作识别和失活的指导RNA。CRISPR-CAS系统的不同类型和家族由具有进化轨迹的独特适应和效应模块组成,部分独立。效应器模块的OIGIN和间隔者积分/缺失的机理远不清楚。在本文中提出了有关CRISPR-CAS系统的结构,生态和演变的最新数据及其在原核生物中辅助基因组调节中的作用。
摘要 - 成人海马的亚晶体区(SGZ)中的神经发生,可以通过多种手段来刺激,包括通过将实验动物暴露于丰富的环境中,从而提供额外的鼻子,社交和运动刺激。在丰富的动物中产生的有形健康和认知益处,包括改善对精神病,神经学和神经退行性疾病的建模,这可能会影响人类,这可能部分是由于神经元的产生增强所致。神经元反应富集的关键因素是释放脑衍生的神经营养因子(BDNF)和有丝分裂原活化蛋白激酶(MAPK)级联反应的激活,这可能导致刺激Neuroogenese或Neuroogenese的刺激。有丝分裂原和应激激活的蛋白激酶1(MSK1)是BDNF和MAPK下游的一种核酶,可调节转录。MSK1先前已经与缺乏MSK1蛋白的小鼠的研究有关基础和刺激的神经发生。在本研究中,使用仅缺乏MSK1激酶活性的小鼠,我们表明SGZ(KI-67染色)的细胞增殖速率没有由MSK1激酶DEAD(KD)突变造成的,并且与控制后水平的水平没有分歧。然而,与野生型小鼠相比,在标准housed和富集的MSK1 KD小鼠中,双铁蛋白(DCX)阳性细胞的数量都更大。2020年作者。由Elsevier Ltd代表IBRO出版。这是CC BY-NC-ND许可证(http://crea-tivecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。这些观察结果表明,尽管MSK1不影响神经元前体的增殖基础速率,但MSK1负责调节注定成为神经元的细胞数量,可能是对新神经元数量的稳态控制,而新神经元的数量则是整合到齿状gyrus中的新神经元的数量。
简介:建立神经连通性模式需要单个神经元将自我与非自然区分开的能力。In mammals, clustered Protocadherin (Pcdh) genes encode cell surface molecular “ identifiers ” (i.e., barcodes) that allow neural “ self/nonself ” discrimination: Neurites from the same cell carrying identical Pcdh barcodes recognize and repel each other, whereas neu- rites from different cells carrying distinct Pcdh barcodes do not.在小鼠中,两个同源性杂种的基因有116个PCDH基因,有组织的intothreetotheThemellanged簇(a,b和g)。不同的神经类型 - pressDistInctrepertoiresofpcdhgeneStoinstoinstoints Instruct is接线过程。这种行为的最值得注意的例子是血清素能神经元(5-HT)中单个PCDH基因的确定性表达,以及在嗅觉感觉神经元(OSN)中一些PCDH基因的随机表达。PCDH A C2的确定性表达式提供了一个5-HT,并具有单个共享条形码。使用这种机制,来自同一细胞的神经突识别和排斥自我,而且还来自其他5-HT的神经突,从而有利于其整个大脑中其轴突的非重叠瓷砖投影。相比之下,随机
是一个用于固体有机废物利用的江苏省密钥实验室,中国有机肥料的关键实验室,江苏固体有机废物的合作创新中心,资源储蓄肥料的教育部工程中心,省资源的肥料中心6700 AA,荷兰C学系,真正的JardínBot'anico-csic,马德里,西班牙,草药改善的国家主要实验室和草原农业生态系统,兰州生态学院,兰州兰州大学,兰州,兰州,兰州,甘努省,甘苏省,甘苏省,甘苏省,gepole of caul o ecologe e Ecologe of Ecology of Ecologe of Ecology of Ecologe of Ecology of Ecology of Ecologe of Ecologe of Ecologe of Ecologa宾夕法尼亚州大学公园,宾夕法尼亚大学公园,宾夕法尼亚州16802,植物科学与哈克生命科学研究院,宾夕法尼亚州立大学,宾夕法尼亚州立大学,美国宾夕法尼亚州立大学公园,美国宾夕法尼亚州大学公园,美国生态学和生物多样性小组,宾夕法尼亚州立大学公园,宾夕法尼亚州立大学,宾夕法尼亚州立大学,宾夕法尼亚州生命科学研究所,宾夕法尼亚州16802 3584 CH,荷兰
基因与复制的起源的接近性在细菌中的复制和转录相关过程中起关键作用。潜在来源位置的计算预测在起源发现中具有重要作用,从而严重降低了实验成本。我们将ORCA(复制评估的起源)作为可视化核苷酸差异的快速且轻巧的工具,并预测了复制起源的位置。orca使用核苷酸差异,DNAA盒区域和靶基因位置的分析来找到潜在的起源位点,并具有随机的森林分类器来预测这些位点可能是起源的。orca的预测和可视化功能使其成为有助于实验确定复制起源的有价值方法。orca用Python-3.11编写,以最少的精力处理任何操作系统,并且可以处理大型数据库。完整的实施详细信息在补充材料中提供,源代码可在GitHub上免费获得:https://github.com/zoyavanmeel/orca。