乍一看,中国发展隐形战机似乎是受到美国二十多年来部署类似战机的推动;从北京的角度来看,如果中国要保持一支可靠的空军,就必须拥有与美国相当的实力。然而,在军事需求背后,似乎还有其他因素在起作用:据一位观察家称,隐形战机表明中国不仅仅是一个拥有“苏联旧货”武器的地区强国,其雄心壮志也不容小觑。2 但问题仍然存在:这些飞机技术演示机或原型机最终是否会投入生产?它们主要是政治象征吗?如果是,它们会投入使用吗?它们的本土化程度如何?中国将完全依赖俄罗斯发动机为这些飞机提供动力,还是即将推出可行的国产替代品?先进的雷达、航空电子设备和武器系统呢?3
于 4 月 27 日进行了首飞,随后完成了初步飞行测试,涵盖了完善初始设计和开发期间使用的模拟模型所需的各种关键测试点。这将应用于其他原型 NP2 和 NP5,作为开发过程中的改进。NP1 还进行了起落架收起,这让设计团队对飞机在作战场景中的性能有了清晰的了解。目前,该飞机正在进行改装和测试,这是在果阿海军航空站进行滑跃起飞所必需的。第二架原型机是战斗机版本 NP2,目前正在成功完成机身结构耦合后进行装备。该飞机吸取了 NP1 测试和第一组飞行以及 LCA AF 版本正在进行的飞行测试中吸取的经验教训。
我们希望我们的 ecoRoadmap 能够为我们的现场运营实现我们的清洁空气发动机议程长期以来在我们产品开发中所代表的目标:航空业的气候转型。零排放飞行是驱动我们前进的愿景。这是一个长期目标,也符合《巴黎协定》,在这方面,我们在 2020 年也取得了进展。例如,我们致力于氢动力燃料电池的概念,并成立了自己的开发团队,该团队正在努力为原型机的首飞做准备。我们预计这将在未来几年内实现。此外,我们正在追求一种推进系统的概念,该系统采用热交换器来利用发动机废气流中的能量,适合为长途飞机提供动力。在我们看来,可持续航空燃料对于航空业的绿色未来同样重要;这些燃料可以与现有的基础设施和发动机架构结合使用,以减少对气候有影响的排放。
微处理器是一块集成电路,可实现运算、控制等功能。近年来,配备有CPU、内存、通信接口等的微处理器已广泛应用于智能手机、汽车、电子设备等。微处理器也是航天器不可或缺的部件,是增强其竞争力的战略部件。日本宇宙航空研究开发机构(JAXA)将航天微处理器定位为航天工业的关键部件,并一直在推进其开发。本报告中介绍的“下一代航天级微处理器(下一代MPU)”是JAXA开发的当前航天级微处理器的后继产品。另一方面,三菱重工有限公司(MHI)通过应用与增强辐射耐受性相关的专利,成功开发了航天微处理器(SOI-SOC2)。正是凭借这样的实力,三菱重工被JAXA选中,作为制造商牵头开发下一代MPU(图1)。截至2021财年,原型机的开发已经完成,飞行模型的设计和制造正在进行中。
AUV NG 是法国军备总局 (DGA)、法国海军、泰雷兹公司和 Exail 于 2023 年开始的合作成果。这项工作的目的是优化两家制造商的解决方案的重复使用,并将开发的重点重新放在具有最高附加值的技术上,从而能够在只有一半大小的无人机中集中法国海军目前使用的 A-27 原型机的所有功能。作为扫雷和水下监视系统的关键要素,该无人机将携带泰雷兹未来一代声纳 SAMDIS 600 声纳以及 MMCM 计划的软件套件。 AUV NG 完全融入了法国海军目前正在实施的未来反水雷系统 (SLAM-F),将与根据该计划获得的指挥中心(特别是布雷斯特中心)协同执行任务,并可在未来的水雷战舰队舰船上实施。
摘要 能够精确测量旋翼叶片动力学的技术几乎可以影响旋翼机领域的所有领域;从维护一直到叶片设计。BladeSense 项目于 2016 年启动,旨在使用能够直接测量形状的新型光纤传感器,在开发和展示这种能力方面迈出一步。在本文中,作者总结了建模和仿真、仪器开发和地面测试方面的关键项目活动。虽然很简短,但还是讨论了这些学科中的工程方法以及相关的挑战和成就。这包括使用计算空气动力学和结构建模来预测叶片动力学,以及开发直接光纤形状传感,允许在叶片上的多个位置上进行 1kHz 以上的测量。此外,还讨论了原型机载系统的开发,该系统克服了在旋转主旋翼和固定机身框架之间传输数据的挑战。 1. 简介
YRF-4C 12200 经过进一步修改,成为 F-4E 项目的空气动力学原型机,1967 年 4 月 20 日,官方名称从 YRF-4C 更改为 YF-4E。从 1968 年开始,YF-4E 测试了由铍制成的方向舵,而不是标准铝制方向舵。空军飞行动力学实验室 (AFFDL) 的工程师建议使用铍来减轻重量,因为铍制方向舵比铝制方向舵轻 34.6%。YF-4E 62-12200 于 1968 年 5 月 14 日使用新方向舵进行了首次飞行,并在接下来的 39 个月内进行了 158 次试飞。在测试新方向舵时,空军对飞机进行了改装,以测试“敏捷鹰 IV”计划下的固定前缘机动缝翼,并在安装到 F-4E 机队之前测试了开槽水平尾翼。测试计划结束时,固定翼前缘缝翼被拆除。
涉及多个水下航行器与海底节点的海洋观测系统对更好地了解海洋起着重要作用,而水下无线通信对于海量数据交互至关重要。与声学等方法相比,具有带宽和综合作用距离的光通信是首选方法。然而方向性的存在使得光学方法难以使用,特别是当收发器配备在动力航行器上时。本研究提出了一种水下自由空间光通信信息传输方法。研究并建模了水下光传输特性、光电信号处理和调制解调算法。提出并仿真了实现水下自由空间光通信的新方法。开发了包括自由空间光发射器和接收器的原型机,并进行了不同场景下的测试,观察到的结果包括:(1)使用最少数量的LED,达到了空间均匀照明的效果,发射机覆盖范围达到160°。 (2)当发射机功率为10W,通信速率为1Mbps时,最大通信距离可达13m。
1961 年 11 月,原型机(Whitfield 早期作品中提到的 Knockdown Room)全面投入使用。这是一个 10 英尺长 x 6 英尺宽 x 7 英尺高的空间,里面只有一个工作台。延伸到天花板的 HEPA 过滤器构成了工作台后面的墙壁,房间地板是金属格栅。过滤后的空气通过工作台后面的墙壁进入房间,扫过整个空间,通过地板格栅排出,过滤器在那里捕获任何微粒,然后通过墙壁过滤器重新循环回到房间。最初人们担心不断流动的空气会打扰空间中的工人,但实际的流动速度打消了这种担忧。空气以每小时 1 英里的速度流动,每分钟大约换气 10 次。走过房间的人也会感受到类似的空气流动——也就是说,在空间中工作的人几乎察觉不到这种流动。
关键词:飞机设计 摘要 HondaJet 是一款先进的轻型公务机,与现有的小型公务机相比,它具有超大机舱、高燃油效率和高巡航速度。为了实现高性能目标,通过广泛的分析和风洞测试,开发了机翼上方发动机安装配置、自然层流机翼和自然层流机身机头。机翼是金属的,具有整体机加工蒙皮,以实现自然层流所需的光滑上表面。机身完全由复合材料制成;加强板和夹层板在高压釜中整体共固化,以减轻重量和成本。原型机已经设计和制造完成。结构验证测试、控制系统验证测试、系统功能测试和地面振动测试等主要地面测试已经完成。首次飞行于 2003 年 12 月 3 日进行,目前正在进行飞行测试。描述了开发过程中的空气动力学、气动弹性、结构和系统设计以及进行的地面测试。