摘要 HondaJet 是一款先进的轻型商务喷气机,与现有的小型商务喷气机相比,它具有超大机舱、高燃油效率和高巡航速度。为了实现高性能目标,通过广泛的分析和风洞测试,开发了机翼上方发动机安装配置、自然层流机翼和自然层流机身机头。机翼是金属的,具有整体机加工蒙皮,以实现自然层流所需的光滑上表面。机身完全由复合材料制成;加强板和夹层板在高压釜中整体共固化,以减轻重量和成本。原型机已经设计和制造完成。结构验证测试、控制系统验证测试、系统功能测试和地面振动测试等主要地面测试已经完成。首次飞行于 2003 年 12 月 3 日进行,目前正在进行飞行测试。描述了开发过程中的空气动力学、气动弹性、结构和系统设计以及进行的地面测试。
摘要:皮秒雪崩探测器是一种基于 (NP) 漂移 (NP) 增益结构的多结硅像素探测器,旨在实现带电粒子跟踪,具有高空间分辨率和皮秒时间戳功能。它使用传感器体积深处的连续结来放大薄吸收层中电离辐射产生的一次电荷。然后,在较厚的漂移区内移动的二次电荷会引发信号。IHP 微电子公司使用 130 nm SiGe BiCMOS 工艺生产了一个概念验证单片原型,该原型由间距为 100 µ m 的六边形像素矩阵组成。探测站和 55 Fe X 射线源的测量表明,原型机可以正常工作,并且显示雪崩增益,最大电子增益可达 23。雪崩特性研究(经 TCAD 模拟证实)表明,55 Fe 源的 X 射线转换产生的较大初级电荷引起的空间电荷效应限制了有效增益。
俄罗斯是继美国之后军事航空业的领头羊。俄罗斯拥有多架飞机,与盟军第 4.5 代和第 5 代战斗机展开竞争。苏霍伊 Su-27 侧卫的衍生机型是本代最先进的战斗机。例如,Su-30 侧卫 C 采用了远程相控阵雷达和推力矢量等先进技术。俄罗斯的衍生机型已出售给中国、印度和委内瑞拉等国家。Su-35 侧卫 E 拥有更先进的传感器,一些专家认为这些传感器在探测低可探测性飞机方面非常强大。但最重要的是,俄罗斯正在研发苏霍伊 PAK FA。其原型机名为 T50,于 2010 年 1 月首次试飞。PAK FA 是俄罗斯与印度合作开发的隐形战斗机,旨在与 F-22 和 F-35 在性能上展开竞争。事实上,一些分析人士认为 PAK FA 的性能可能超过 F-35。俄罗斯认为它可以在 2015/2016 年推出。[5][6]
地雷和埋藏的简易爆炸装置对现代冲突地区的美国作战人员来说是一个真实而持续的威胁。这些威胁在战斗平息后仍会持续数十年,每年造成数千名平民(通常是儿童)死亡或致残。从空中安全远程探测埋藏的威胁可以减少军人和平民的伤亡,同时提高部队的机动性。耦合声光技术在探测和辨别埋藏目标方面很有前景:声波震动地面并激发埋藏地雷的响应,这些响应可以用扫描激光测振仪检测到。海军有意将该系统安装在无人直升机上,以便快速部署、快速勘察,并确保参与的士兵几乎完全安全。Creare 正在开发一种紧凑型机载声学发射器 (CAAT) - 一种轻便高效的声源 - 以产生高强度、低频声波,足以从离地面 2,000 英尺的高度震动地面。我们的第一代原型机在尺寸、重量、功率等方面达到或超过了海军的规格要求,
摘要:皮秒雪崩探测器是一种基于 (NP) 漂移 (NP) 增益结构的多结硅像素探测器,旨在实现带电粒子跟踪,具有高空间分辨率和皮秒时间戳功能。它使用传感器体积深处的连续结来放大薄吸收层中电离辐射产生的一次电荷。然后,在较厚的漂移区内移动的二次电荷会引发信号。IHP 微电子公司使用 130 nm SiGe BiCMOS 工艺生产了一个概念验证单片原型,该原型由间距为 100 µ m 的六边形像素矩阵组成。探测站和 55 Fe X 射线源的测量表明,原型机可以正常工作,并且显示雪崩增益,最大电子增益可达 23。雪崩特性研究(经 TCAD 模拟证实)表明,55 Fe 源的 X 射线转换产生的较大初级电荷引起的空间电荷效应限制了有效增益。
摘要 — 本文报道了一种新型差分折叠混频器,该混频器采用多重反馈技术来提高性能。具体而言,我们引入了电容交叉耦合 (CCC) 共栅 (CG) 跨导级,通过提高有效跨导来改善低功耗下的噪声系数 (NF),同时通过抑制二阶谐波失真来提高线性度。通常,CCC 产生的环路增益会增加三阶互调 (IM3) 失真,从而降低输入参考三阶截点 (IIP3)。在这里,我们建议在 CCC CG 跨导器中加入正电容反馈和第二个电容反馈,不仅可以抑制 IM3 失真电流,还可以增加输入晶体管的设计灵活性。此外,正反馈还通过灵活的设计标准改善了输入阻抗匹配、转换增益和 NF。采用 0.13 µ m 工艺制作的原型机,所提出的混频器工作在 900 MHz,在 1 V 电压下功耗为 4 mW。测得的双边带 (DSB) NF 为 8.5 dB,转换增益 (GC) 为 18.4 dB,IIP3 为 + 12.5 dBm。
当时,英国和法国正在计划制造协和式超音速客机。在美国,也有超音速客机的计划,但成本相当高。因此,肯尼迪总统陷入了困境。肯尼迪要求联邦航空管理局 (FAA) 局长纳吉布·哈拉比 (Najeeb Halaby)(他后来成为 PAA 的主席)要求胡安·特里普不要为 PAA 购买外国协和式客机。然而,特里普知道肯尼迪在犹豫不决,决定强迫总统采取行动。1963 年 5 月,特里普前往英国和法国,选择购买八架飞机,成为除法航和/或英国海外航空以外第一家订购超音速客机的航空公司。总统对此并不满意。此后不久,肯尼迪总统下令开展商业超音速项目,特里普签约购买 15 架波音超音速客机。左图:标题:“波音 2707-200 超音速客机原型机蓝图” 右图:标题:“波音超音速客机剖析”
摘要本文提出了一种利用人工智能技术来识别自动机器行为模式的方法。调查背景涉及一组原型自动拖运者,这是建筑和采矿行业正在开发的产品服务系统解决方案的一部分。该方法涉及使用基于深度学习的对象检测和计算机视觉来了解原型机在不同情况下的操作。受过训练的模型可以准确预测并跟踪已加载和卸载的机器,并有助于识别数据模式,例如课程偏差,机器故障,意外的放缓,电池寿命,机器活动,每次充电的循环次数以及速度。PSS解决方案在有效分配资源以满足所需的站点级输出方面取决于。解决方案提供商可以通过使用论文中概述的AI技术在开发的早期阶段做出更明智的决策,考虑到资产管理和重新分配资源来解释计划外的停止或意外减速。了解早期PSS开发中的机器行为方面可以实现更有效和定制的PSS解决方案。
内部空间非常适合两名体型较大的飞行员,宽度比赛斯纳 172 稍大。与 Sling High Wing 相比,一个显著的区别是垂直稳定器比低翼飞机高 20 厘米。Sling High Wing 和 Sling TSi 的显著区别在于发动机罩右侧的大型 NACA 管道,它将空气送入发动机的大容量中冷器。弓形复合材料主起落架支柱是 Sling Aircraft 的标准配置,并连接到单体式机身下侧,与 Sling TSi 相比变化很小。复合材料门关闭牢固,在原型机上,它们安装得非常好。门方便地铰接在机身两侧的前部。后排座椅提供了充足的舒适度,座椅后面有一个行李舱。前轮也没有变化,允许与 Sling TSi 一样向前安装防火墙。 ZU-SHW 是一个原型机,我听说该飞机的完成度达到了 95%,但是团队希望生产模型的完成度达到 100%,因此在他们乐意将 Sling High Wing 投入批量生产之前,还需要进行一些“调整”。
苏霍伊 u-35bm/u-35-1 侧卫 E 基础型 Su-35 侧卫 E 于 1993 年首次公开亮相后,于 20 世纪 90 年代中期投入使用。被称为“超级侧卫”的 Su-35 营销名称取代了开发过程中使用的初始军用名称 Su-27M(改进型)。第一架原型机的制造工作于 1987 年开始。这架飞机是当时由苏联前线航空兵和 PVO-S 防空部队运营的 Su-27 和 Su-27S 侧卫 B 空中优势战斗机的渐进式发展。这些“基线”侧卫战斗机几乎专注于空中优势和防空任务,与美国 MDC F-15A-D 变体类似,并且只配备了在基本视觉和盲轰炸模式下投放哑弹的功能。Su-35 是第一款真正的“多用途”侧卫战斗机,配备了投放智能武器以及一系列增强的空战功能。Su-27M 最明显的区别是采用了鸭翼前翼和扩大的翼套面积,最初是为海军 Su-27K/Su-33 侧卫 D 开发的。鸭翼在机动过程中提供了更好的俯仰率,增强了飞机的低速和高阿尔法操控性,同时提供了更广泛的重心条件。