本格拉洋流大型海洋生态系统 (BCLME) 位于非洲西南部海岸,从南赤道好望角东部一直延伸到安哥拉北部地缘政治边界附近的安哥拉前线(见图 1)。它涵盖了世界四大沿海上升流生态系统之一,位于海洋的东部边界。与洪堡、加利福尼亚和加那利系统一样,本格拉是海洋生物多样性和海洋食物生产的重要中心。BCLME 独特的水深、水文、化学和营养动力学使其成为世界上最富饶的海洋区域之一,年平均初级生产力为每平方米每年 1.25 克碳 - 大约是北海生态系统的六倍。孟加拉湾海洋生态系统的高初级生产力水平支撑着全球重要的生物多样性和浮游动物、鱼类、海鸟和海洋哺乳动物的生物量,而近海和离岸沉积物中则蕴藏着丰富的珍贵矿物(尤其是钻石)以及石油和天然气储量。沿海地区的自然美景也使一些地区旅游业蓬勃发展,其中许多地区以全球标准来看仍属原始状态。然而,工业污染以及规划和管理不善的沿海开发和近海活动正在导致脆弱的沿海栖息地迅速退化。
10。文件较少的恶意软件预防11。文件/Web声誉iv。解决方案应提供基于签名的恶意软件保护,行为分析和基于AI/机器学习的分析的组合。v。机器学习必须具有提取fi le特征和FI LE/过程行为的运行时间分析以识别威胁的前执行智能。vi。该解决方案必须具有行为监控模块,以不断监视端点,以便对操作系统或安装软件的异常修改,以从表现出恶意行为的程序中提供额外的威胁保护。vii。该解决方案必须具有抗探索模块,以终止与利用攻击相关的异常行为的程序。解决方案必须能够检测多种利用技术,例如内存损坏,逻辑FL AW,恶意代码注入/执行。VIII。 如果机器受到损害,解决方案必须提供针对勒索软件的保护机制,并且应具有要保护的文档,以防止未经授权的加密或修改。 ix。 该解决方案必须能够创建由端点上的勒索软件加密的fi les的副本,并且必须能够将受影响的fi les恢复到其原始状态。 x。 该解决方案必须能够通过HTTP/HTTPS协议和常用的HTTP端口来识别通信,它必须能够检测/防止与全局C&C的通信,并允许管理员还可以创建用户定义的列表。 xi。 XII。 xv。 xvi。VIII。如果机器受到损害,解决方案必须提供针对勒索软件的保护机制,并且应具有要保护的文档,以防止未经授权的加密或修改。ix。该解决方案必须能够创建由端点上的勒索软件加密的fi les的副本,并且必须能够将受影响的fi les恢复到其原始状态。x。该解决方案必须能够通过HTTP/HTTPS协议和常用的HTTP端口来识别通信,它必须能够检测/防止与全局C&C的通信,并允许管理员还可以创建用户定义的列表。xi。XII。 xv。 xvi。XII。xv。xvi。该解决方案应具有虚拟的修补功能,并能够在各种端点上提供最易于实现的脆弱性保护。该解决方案必须支持基于主机的防火墙,并具有状态检查,根据源/目标/端口/协议/应用程序创建规则的选项,以提供状态检查和高性能网络病毒扫描XIII。“该解决方案必须具有一个集成的应用程序控制模块,以通过防止未知和不需要的应用程序执行XIV来增强针对恶意软件和有针对性攻击的防御。在公司端点上,具有FL Exible,动态策略,白名单(默认 - deny)和锁定功能的组合。”解决方案集成的应用程序控制应基于在全球网络上相关的良好文件信誉数据提供全球和本地实时威胁智能。“解决方案设备控制功能必须能够通过分配读取,读/写,写和
这项关于金属有机骨架 (MOF) HUKUST-1 薄膜的研究重点是比较未掺杂的原始状态和通过 TCNQ 渗透 MOF 孔结构进行掺杂的情况。我们已经确定了 HKUST-1 薄膜的温度相关电荷传输 p 型电导率。此外,还详细表征了电导率和电流-电压特性。由于最常见的 MOF 形式,即块状 MOF 粉末,不易进行电气特性研究,因此在本研究中,电气测量是在致密、紧凑的表面锚定金属有机骨架 (SURMOF) 薄膜上进行的。这些单片、明确定义和 (001) 优先取向的 MOF 薄膜是使用准液相外延 (LPE) 在特殊功能化的硅或硼硅酸盐玻璃基板上生长的。在原始 SURMOF 薄膜上,研究了在这些多孔薄膜中加载 TCNQ 的影响。在高度定向的 SURMOF 薄膜中观察到正电荷载流子传导和强烈的电导各向异性,并通过塞贝克系数测量得到证实。范德堡四点霍尔测量为此类多孔和混合有机-无机晶体材料的电行为提供了重要的见解,这使得它们在微电子和光电子设备以及热电应用中具有潜在应用价值。
本格拉洋流大型海洋生态系统 (BCLME) 位于非洲西南部海岸,从南赤道好望角东部一直延伸到安哥拉北部地缘政治边界附近的安哥拉前线(见图 1)。它涵盖了世界四大沿海上升流生态系统之一,位于海洋的东部边界。与洪堡、加利福尼亚和加那利系统一样,本格拉是海洋生物多样性和海洋食物生产的重要中心。BCLME 独特的水深、水文、化学和营养动力学使其成为世界上最富饶的海洋区域之一,年平均初级生产力为每平方米每年 1.25 克碳 - 大约是北海生态系统的六倍。孟加拉湾海洋生态系统的高初级生产力水平支撑着全球重要的生物多样性和浮游动物、鱼类、海鸟和海洋哺乳动物的生物量,而近海和离岸沉积物中则蕴藏着丰富的珍贵矿物(尤其是钻石)以及石油和天然气储量。沿海地区的自然美景也使一些地区旅游业蓬勃发展,其中许多地区以全球标准来看仍属原始状态。然而,工业污染以及规划和管理不善的沿海开发和近海活动正在导致脆弱的沿海栖息地迅速退化。
本格拉洋流大型海洋生态系统 (BCLME) 位于非洲西南部海岸,从南赤道好望角东部一直延伸到安哥拉北部地缘政治边界附近的安哥拉前线(见图 1)。它涵盖了世界四大沿海上升流生态系统之一,位于海洋的东部边界。与洪堡、加利福尼亚和加那利系统一样,本格拉是海洋生物多样性和海洋食物生产的重要中心。BCLME 独特的水深、水文、化学和营养动力学使其成为世界上最富饶的海洋区域之一,年平均初级生产力为每平方米每年 1.25 克碳 - 大约是北海生态系统的六倍。孟加拉湾海洋生态系统的高初级生产力水平支撑着全球重要的生物多样性和浮游动物、鱼类、海鸟和海洋哺乳动物的生物量,而近海和离岸沉积物中则蕴藏着丰富的珍贵矿物(尤其是钻石)以及石油和天然气储量。沿海地区的自然美景也使一些地区旅游业蓬勃发展,其中许多地区以全球标准来看仍属原始状态。然而,工业污染以及规划和管理不善的沿海开发和近海活动正在导致脆弱的沿海栖息地迅速退化。
摘要 — 在当前的嘈杂中尺度量子 (NISQ) 量子计算时代,量子比特技术容易出现缺陷,从而导致各种错误,例如门错误、退相干/失相、测量错误、泄漏和串扰。这些错误对在 NISQ 设备中实现无错误计算提出了挑战。针对此问题提出的解决方案是量子纠错 (QEC),旨在通过三步过程纠正损坏的量子比特状态:(i) 检测:识别错误的存在,(ii) 解码:精确定位受影响量子比特的位置,以及 (iii) 校正:将故障量子比特恢复到其原始状态。QEC 是一个不断扩展的研究领域,涵盖了复杂的概念。在本文中,我们旨在全面回顾量子纠错的历史背景、现状和未来前景,以满足对量子物理及其相关数学概念不太熟悉的计算机科学家的需求。在本研究中,我们 (a) 解释 QEC 的基本原理并探索用于纠正量子比特错误的现有量子纠错码 (QECC),(b) 探索这些 QECC 在实施和纠错质量方面的实用性,以及 (c) 强调在当前 NISQ 计算机环境下实施 QEC 所面临的挑战。索引术语 — 量子纠错、量子计算、纠错码
量子计算现已成为现实,构建各种即将出现的应用模块具有巨大的重要性。其中一种应用是多体理论领域,该领域存在着大量的计算挑战。量子化学 [1–3] 和多个物理学领域 [4–6] 在这方面取得了长足的进步。在核物理学中,类似的尝试最近也获得了发展势头 [7–19]。本研究旨在增强这方面的努力,通过利用通过量子模拟获得的波函数,为在量子计算机上计算算子期望值提供解决方案。在本文中,我们主要提出了两种计算非幺正算子期望值的方法。首先,我们通过以第二种量化形式表示算子,将非幺正算子分解为幺正算子。这些幺正算子的线性组合 (LCU) 的期望值可以在量子计算机上轻松计算,使用 Hadamard 检验法,就像 VQE 算法中使用的一样。其次,我们实现了 LCU 方法 [20, 21] 来计算波函数上的非幺正运算。该技术已被提出用于在量子计算机上为核系统准备激发态。[12]。在这里,我们将其扩展为计算非幺正算子的期望值。SWAP 检验法和破坏性 SWAP 检验法 [22] 用于计算结果状态与原始状态的重叠
不要尝试为电池充电。EC(欧洲化学机构(ECHA))和美国(职业安全与医疗管理员(OSHA))立法下的危险物质该产品被归类为制造物品,在正常使用条件下不会释放或以其他方式导致危险化学物质。因此,该产品免于专用安全数据表(SDS)的要求。以下信息被视为指导和礼貌:电池电池的锂含量小于1 g。 SAFT的信息有关电池电池类型LSH-14光线,具有化学系统锂金属硫代二氯化物(LI-SOCL2)。该产品可能包含以下活性成分,按CAS编号和名称:CAS编号材料或成分7439-93-2锂金属7719-09-09-09-7甲基二氯化物7446-70-0-0-0-0-0-0-0-0-0-0-0如果细胞保持其密封和原始状态,则PTFE不会暴露释放或有害化学物质。此信息是真诚地提供的,并根据SAFT电池“电池信息表”,主要LI-SOCL2单细胞和多电池电池组的信息提供。NetWave Systems B.V.对此信息不做任何明示或暗示的保修。此信息是真诚提供的,并且被认为在准备之日是准确的。NetWave Systems B.V.在此信息方面不做任何明示或暗示的保修,并不承担所有责任。电池电池本身的安全数据表可以在电池制造商的网站上找到。
关于宇宙原始状态的复杂性质的有力陈述是由基于一般相对论的经典描述中混乱动力学的通用特征[1,2]做出的。在早期,高阳光宇宙中不断发展的空间各向异性可以通过有效的潜力来描述,该有效潜力通过将各向异性参数限制为有限区域的墙壁编码时空曲率的效率。关于应用于这些墙的台球动力学的数学结果,这些壁恰好是凸面并因此散落,然后保证混乱[3]。量子效应,例如波动或对量子重力的各种几何影响,可能会使这种行为更加违反直觉和更难解开。因此,不可能找到对宇宙初始状态的可靠知识。尤其是,一系列关于超级和弦理论的研究在某种程度上证实了这一期望,表明当包括与统一相关的额外维度和领域时,动态仍然混乱[4,5]。这种新成分通过包括新的独立自由度,扩展了各向异性参数的经典配置空间。尽管如此,它们带来了自己的曲率贡献,这些曲率贡献在有效的各向异性潜力中具有定性特征,从而保持了混乱的动力学。这些模型并不是完全量子,因为它们不考虑具有波动和相关性的状态,并遵守不确定性关系。独立地,量子宇宙学具有波动状态,也已应用于这个问题,但到目前为止,结果混合了[6-9],例如diffi-
许多量子算法都利用了辅助位,即用于在计算过程中存储临时信息的额外空闲位,这些信息通常在使用后恢复到其原始状态。辅助位有多种用途,例如减少总执行时间。在某些情况下,它们可以渐进地改善电路分解的深度。这凸显了量子程序中一个重要的时空权衡——我们以辅助位的形式花费额外的空间,以减少输入电路的深度。真正的量子机器的量子比特数量有限,因此充分利用它们以更快地计算更大、更有用的问题非常重要。最近,[1] 证明了高维量子比特可以作为某些电路元件中辅助位的替代品,效果很好。虽然量子电路通常以量子比特上的二进制逻辑门来表示,但在许多量子技术中,这种两级抽象是肤浅的。超导量子比特 [2] 和捕获离子 [3] 具有无限多种可能的状态,而较高的状态通常被抑制。不幸的是,通过访问这些状态,计算会受到更多种类的错误的影响,实际上错误类型的数量在计算基数中呈二次方增长 [1]。但是,如果正确使用量子比特状态,则获得的好处会超过这种成本。具体来说,我们在计算过程中暂时使用量子比特状态,同时保持电路的二进制输入和输出。