在一篇受邀请的文章中,该文章也被选为Optica Quantum,Blumenthal的封面,以及研究生研究员Andrei Isichenko和博士后研究员Nitesh Chauhan,提出了最新的发展和未来的方向,以诱捕和冷却这些原子,这些原子对这些实验至关重要,这些原子将为这些实验带来适合他们的武器。
通过水电解的氢进化反应(HER)已成为氢生产的一种有吸引力且可持续的方法。1 - 3个电催化剂对于提高她的效率至关重要。然而,由于贵金属催化剂的稀缺性和高成本,发展成本效率,高度有效和稳定的电催化剂仍然是一种显着挑战 - 对于大规模利用氢能的挑战。单原子催化剂(SACS)表现出最大的原子效率,高选择性和对各种化学反应的高活性,已在催化的ELD中打开了一个新的边界。4 - 7由廉价,丰富的金属组成的SAC的发展为加速氢经济提供了机会。在2011年,Qiao及其同事通过采用共同沉积方法来准备PT SAC
中性原子的阵列被困在光学镊子中 - 可以将原子固定到位的高度集中的激光束 - 是构建量子处理器的越来越流行的方式。中性原子的这些网格,当以特定序列激发时,可以将复杂的量子计算缩放到数千个Qubits。但是,它们的量子状态是脆弱的,可以很容易被破坏 - 包括光子设备,旨在以光子的形式收集其数据。
分子氧与半导体氧化物表面的相互作用在许多技术中起着关键作用。这个主题很难通过实验和理论来实现,这主要是由于多种施加电荷状态,吸附氧气的吸附构和反应通道。在这里,我们使用非接触原子力显微镜(AFM)和密度功能性the-Ory(DFT)的组合来解决金红石TIO 2(110)表面上的吸附O 2,这在金属氧化物的表面化学中提出了长期的挑战。我们表明,通过氧气量终止的化学惰性AFM尖端可以很好地解决吸附物种和底物的氧气sublattice。吸附的O 2分子可以从表面接受一个或两个电子极性,形成超氧或过氧物种。在与应用相关的任何条件下,过氧状态是最优选的。非侵入成像的可能性使我们能够解释与尖端注入电子/孔注入相关的行为,与紫外光的相互作用以及热退火的效果。
石墨烯和相关的二维(2D)材料相关的机械,电子,光学和语音性能。因此,对于将其基本激发(激发子,声子)与宏观机械模式搭配的混合系统来说,2D材料是有希望的。与较大的架构相比,这些内置系统可能会产生增强的应变介导的耦合,例如,包括一个与纳米机械谐振器耦合的单个量子发射极。在这里,使用微拉曼光谱法对原始的单层石墨烯鼓上的鼓,我们证明了石墨烯的宏观膨胀振动诱导动力学光学声子软化。这种软化是动态诱导的拉伸应变的明确填充物,在强的非线性驾驶下达到了≈4×10-4的值。这种非线性增强的应变超过了具有相同根平方(RMS)幅度的谐波振动预测的值,多个数量级。我们的工作对2D材料和相关异质结构中光 - 物质相互作用的动态应变工程和动态应变介导的控制有望。
一开始是定位的缩放理论。Boomer物理学家1被培养为认为没有二维金属,因为任何含量的疾病都会导致定位和绝缘行为2。他们了解到,微调金属行为可以在超导体 - 绝缘体过渡的量子临界点上表现出来,并通过磁场或混乱来调节,并且对超导膜的早期实验似乎证实了这张图片:超导能力:超导对过渡的一侧,在过渡的一侧,在另一种和关键的金属状态下进行隔离。但从1990年开始,实验表明没有关键的金属状态,而是整个金属阶段开始积累。这种异常的金属状态(AMS)是不寻常的,因为除其他外,其电导率σxx(t→0)的升级为低于正常状态Drude理论的值。另一个异常是观察到的幂律缩放r xx〜(h-h 0)α(t)
Vincent Tung完成了博士学位。在加利福尼亚大学洛杉矶分校(UCLA),是西北大学西北(ISEN)博士后研究员的可持续性与能源研究所。 自2022年7月起,他一直是东京大学化学系统工程系的教授。 他是NSF职业奖,ACS石油奖的新博士研究员,加利福尼亚大学系统的研究卓越,以及109篇文章的作者。 他的研究兴趣是二维(2D)分层材料的材料化学,加工和外观增长及其下一代的VDW异质结构Vincent Tung完成了博士学位。在加利福尼亚大学洛杉矶分校(UCLA),是西北大学西北(ISEN)博士后研究员的可持续性与能源研究所。自2022年7月起,他一直是东京大学化学系统工程系的教授。他是NSF职业奖,ACS石油奖的新博士研究员,加利福尼亚大学系统的研究卓越,以及109篇文章的作者。他的研究兴趣是二维(2D)分层材料的材料化学,加工和外观增长及其下一代的VDW异质结构
脉冲表征基于强场物理学(例如Attosend straking and Tiptoe)的技术已被证明有效地表征了激光场的波形。尽管这些技术很强大,但它们通常需要高度复杂的设置或高强度,这对于MID-IR激光驱动程序而言可能具有挑战性。我们利用高谐波生成用于ZnO的薄膜和WS 2的单层薄膜中电场的时间域(HHG-TOE)。此方法涉及用弱复制品驱动驱动器的谐波产量。通过改变两个梁之间的延迟,我们测量了3200 nm处的几个周期脉冲的持续时间。我们的结果与已建立的脉冲特征技术表现出良好的一致性,从而验证了该方法的可靠性。
原子层沉积 (ALD) 是目前广泛应用的薄膜生长方法。它目前用于微电子和发光显示技术的工业制造工艺。由于可以生长致密、保形的薄膜,并且厚度可以得到完美控制,因此 ALD 有望用于许多其他应用领域,如能源、传感、生物材料和光子学。尽管关于其在防腐方面的应用报道很少,但事实已证明 ALD 的优良特性对该领域大有裨益。在简要回顾了 ALD 的原理以及主要参数对薄膜性能的影响之后,本报告试图展示该技术在减轻腐蚀方面的应用。本文回顾了在不同领域成功使用 ALD 来保护金属和非金属表面的各种实例。