频率调制 (FM)。图 3a 中的框图描述了振幅和相位检测以及 FM 模式。在振幅和相位检测模式下,LiftMode 扫描期间没有反馈;即,使悬臂振荡的驱动信号具有恒定频率。通过绘制悬臂的相位或振幅与平面坐标的关系,可以生成 3-D EFM 图像。在 FM 模式下,悬臂振荡的相位是相对于高分辨率振荡器的驱动信号的相位来测量的。相位差用作反馈方案中的误差信号;即,驱动信号的频率被调制(图 3a 中的“频率控制线”),以使悬臂振荡相对于驱动信号保持恒定相位。然后绘制驱动信号频率的调制与平面坐标的关系,从而创建 3-D EFM 图像。
蒸汽旋转涡轮机后,将其冷却并在冷凝器中冷凝回水中。然后将其循环回锅炉,过程自我重复。用于冷却冷凝器内部蒸汽的水来自发电厂的冷却系统。这些系统可以是开放环或闭环。在开环系统中,从湖泊,河流或其他水体中注入水;它冷却冷凝器中的蒸汽并将其送回。在闭环系统中,冷却水被重复使用。一种闭环系统使用冷却塔。从塔中的冷水通过冷凝器管道,回到冷却塔中,在那里蒸发过程会冷却水,然后将其送回冷凝器。塔楼内发生的蒸发会产生巨大的,毛茸茸的白色蒸汽云,有些人误以为烟。
环境意义上的cance声明是“有前途的方法和动力学前景的药物污染物的微生物降解。” 1。问题/情况是什么?药物污染物的释放通过药物制造单元的药物,药物和其他使用的化合物的处理不当,在全球范围内释放。这阻碍了许多生物体的生物学活性,并且对生态系统具有长期影响。2。为什么要解决/理解这一点很重要?药物污染物的修复对于缓解由生态系统中化合物引起的负面影响至关重要。微生物降解被认为是有效的补救策略之一。微生物具有将复杂的药物化合物降解为更简单的物质的能力。因此,对基于微生物的药物污染物降解的机制和进步的明确理解对于有效解决污染问题至关重要。3。是什么是关键,以及与上述1和2有关的含义是什么。药物污染物微生物降解中的分子机制是本综述中的关键。微生物与污染物的相互作用增加了对降解过程的更好理解。已经详细讨论了在微生物降解过程中需要优化的因素,其中微生物接种物,pH和温度的类型对于更好的降解至关重要。诸如基因工程和固定化之类的进步可以使药物化合物的完全降解,并抑制有毒化合物的释放。
电池技术锂离子(LFP)电池模块数量[PCS] 2 3 4 5 6 7电池系统电压[V] 204.8 307.2 409.6 512 614.4 716.8电池系统容量[KWH/AH/AH] 10.24/AH] 10.24/50 15.36/50 15.36/50 20.48/50 20.48/50 25.6/50 30.72/50 35.72/50 35.85.84/50 BMS MMS MMS MMS FH10050电池系统最大充电电压[V] 230.4 345.6 460.8 576 691.2 806.4电池系统最小电池系统最小排放电压[V] 185.6 278.4 371.2 464 556.8 649.6电池/排放测试/排放电池(*A])电池系统最大电池/电池最大电池量55级电池量55级电池/均值。 <3000 Efficiency [%] 96 Depth of Discharge [%] 95 Communication bus CANBUS/Modbus RTU Operation temperature [°C] -10 ~ 55 Storage temperature [°C] -20 ~ 60 Humidity [%] 5 ~ 95 (without condensation) Altitude [m] <4000 Protection degree IP55 Operation life [years] 10+ Transfer Certificate UN38.3 Product certificate UL1973, IEC62619, IEC63056,VDE-AR-E 2510-50,UL9540A,CE红色,CE LVD尺寸540x350xH [mm] 530 700 870 1040 1040 1040 1210 1380重量[kg] 92 131 131 170 209 248 248 248 287(*)用于确定电池容量的电池容量