招募条件 1.概要 我们正在青森县津轻市富谷地屏风山1号的航空自卫队舍利基基地招募汽车共享服务的运营商,具体条件如下。二、报名资格 (一)报名者须具有国防部竞标资格(各部会统一资格)或同等资格。 (2)该人从事汽车共享服务的运营。 (3)法人等(指个人、法人或组织)的职员等(如果是法人,则指个人、职员、分支机构或营业所的代表;如果是组织,则指代表、董事等或实质上参与管理的其他人员;下同)不是有组织犯罪集团(指《关于防止有组织犯罪成员不正当行为的法律》(1991年法律第77号)第2条第2款定义的有组织犯罪集团;下同)或有组织犯罪成员(指同一法律第2条第6款定义的有组织犯罪成员;下同)。 (4) 董事等不得利用黑社会组织或黑社会组织成员为自己、公司或第三方获取不正当利益,或给第三方造成损害。 (5) 警官等不是向黑社会组织或黑社会组织成员提供资金或其他利益等,直接或积极地协助或参与黑社会组织的维持或运营的人。 (6) 官员等不得明知自己是有组织犯罪集团或帮派成员,而利用此类成员进行不正当利用。 (7) 警官等不是与黑社会组织或黑社会组织成员有社会谴责关系的人员。 (8)不是黑社会性质组织或者其他组织的成员,也不是根据第4项至第7项所列人员的要求参与招募的人员。 3. 设置设施地点及名称:青森县津轻市富谷地屏风山1号、日本航空自卫队舍利木支部基地 4. 公开招标说明会(含现场说明会):未出席本次说明会的承包商将不能参加公开招标。 (1)时间:2024年8月19日(星期一)下午2点开始 (2)地点:航空自卫队Shariki分部基地第1中队楼多功能室(接待处:第57营福利科柜台) (3)携带物品:招募指南和规范、书写工具 (4)其他:希望参加的公司应在2024年8月16日(星期五)中午之前与我们联系,并提供公司名称、姓名、联系方式、将带入基地的车辆信息等。 联系方式:航空自卫队沙里木支部福利科招募科负责人:吉田、松本 0173-56-2531(内线234、235)
分子动力学仿真是计算材料科学和化学的重要工具,在过去的十年中,它通过机器学习进行了革命。在过去的几年中,机器学习跨性别潜力的快速进步已经产生了许多新的体系结构。在其中特别值得注意的是原子聚类的扩展,它统一了围绕原子密度的描述符的许多早期思想和神经模式间影响(NEQuip),这是一个具有信息的神经网络,具有等效性特征,当时表现出了最先进的精度。在这里,我们构建了一个统一这些模型的数学框架:原子聚类的扩展是扩展的,并作为多层体系结构的一层重新铸造,而Nequip的线性化版本则被理解为对更大的多项式模型的特定稀疏。我们的框架还提供了一种实用的工具,用于系统地在此统一的设计空间中探索不同的选择。通过一系列实验进行了一组Nequip的消融研究,该实验远离域内和外部的精度和平滑的外推离训练数据很遥远,阐明了一些设计选择对于实现高精度至关重要。NEQuip的简化版本,我们称为Botnet(用于身体订购的张量网络),具有可解释的体系结构,并在基准数据集上保持其准确性。
注:其他可再生能源包括生物能源、地热能、水力发电和海洋能 资料来源:2021 年实际数据来自《BP 世界能源统计评论 2022》,2022 年 6 月。有关 2050 年的预测可参见国际能源署的《2022 年世界能源展望》(2022 年 10 月)、美国能源部的《太阳能未来研究》(2021 年 9 月)、日本自然能源基金会 /Agora Energiewende/拉彭兰塔-拉赫蒂理工大学的《日本实现气候中和的可再生能源途径:目标是到 2050 年实现能源系统零排放》(2021 年 3 月)以及法国电力运输网络的《2050 年能源途径:主要成果》(2021 年 10 月)。
1988 年 12 月,随着中能重离子加速器 (MEHIA)(14 UD Pelletron 加速器)设施的投入使用,该国首次获得了足够高能量的重离子束,适合进行核物理的高级研究。在这一年中,Pelletron 加速器设施周围的四条光束线和相关实验设备的设置已经完成。实验设施包括通用散射室、BGO 伽马射线探测器多重装置、用于放射化学研究的靶辐照设施和基于 CAMAC 的多参数数据采集系统。虽然许多基础核物理研究项目都利用了 Pelletron 加速器设施,但也有几项研究项目是利用 Trombay Van de Graaff 加速器和加尔各答 VEC 的带电粒子束进行的。特朗贝 Cirus 反应堆产生的中子束也用于裂变研究。
摘要:稳态的视觉诱发电位(SSVEP)是脑电图中与事件相关的潜力(EEG),已应用于大脑 - 计算机接口(BCIS)。基于SSVEP的BCIS目前在各种BCI实施方法中在信息传输率(ITR)方面表现最好。规范组件分析(CCA)或频谱估计(例如傅立叶变换及其扩展)已用于提取SSVEP的特征。但是,这些信号提取方法在可用的刺激频率上有限制。因此,命令的数量有限。在本文中,我们提出了一个复杂的有价值的卷积神经网络(CVCNN),以克服基于SSVEP的BCI的限制。实验结果表明,所提出的方法克服了刺激频率的限制,并且表现优于常规的SSVEP特征提取方法。
材料表面之间电磁场的约束会导致后者之间产生力,这是由于前者的量子涨落造成的,这种力有许多有趣的特点。首先,这种力代表了真空量子性质的宏观表现,可以用当前的实验技术测量。其次,对自然界中的几种现象进行仔细研究后,有强有力的证据表明,粘附、摩擦、润湿和粘滞从根本上说是这些量子涨落的结果。第三,随着设备不断向纳米级小型化,设计物体间真空涨落的能力可能为改进设备架构、组装方法或功能铺平道路。在本文中,我们将简要讨论最近对长距离和短距离排斥力的测量、未来实验的测量方案,以及利用修改真空涨落约束产生的这些力的能力的技术机会。