如今,对新药的探索导致了成千上万种新物质的开发。有效的药物设计策略之一是修改先前获得和研究过的物质。一种非常流行的修改是将卤素引入药物结构,最常见的是氟或氯原子。然而,将溴引入潜在药物的结构也有许多优点。一个很好的例子是从海洋生物中提取的天然物质,这些物质已被研究并证明对各种疾病有效,包括耐药细菌的抗生素治疗。许多研究证明了溴及其同位素在治疗中的使用是合理的(包括诊断成像和放射治疗)。为了更好地解释“溴化”的影响,许多研究人员将这种现象描述为“卤素键”。由于有机分子卤素原子中存在所谓的“σ-空穴”,因此可以形成这些键,从而导致分子间和分子内相互作用的变化。此类变化可以对药物-靶标相互作用产生有利影响。溴化的优点包括提高治疗活性、对药物代谢产生有益影响以及延长药物作用时间。此外,重原子效应现象可用于提高光动力疗法和放射增敏的有效性。不幸的是,“溴化”并非没有缺点,我们可能包括增加毒性作用和在生物体内的积累。
技术计算机辅助设计用于模拟半导体工艺和器件,这个领域已变得日益复杂和异构。如今,集成电路的加工需要超过 400 个工艺步骤,而最终的器件往往具有复杂的 3D 结构并包含各种材料。只有考虑从原子(界面、缺陷等)到纳米(量子限制、非体积特性等)到完整芯片尺寸(应变、热传输等)的所有长度尺度,以及从飞秒到秒的时间尺度的影响,才能理解完整的器件行为。电压、电流和电荷已缩放到如此低的水平,以至于电子噪声、统计效应和工艺变化都有很大的影响。基于新材料(例如 2D 晶体)和物理原理(铁电体、磁性材料、量子比特等)的器件对标准 TCAD 方法提出了挑战。虽然物理学界开发的模拟方法可以描述基本的器件行为,但它们通常缺乏重要的模拟功能,例如瞬态模拟或与其他 TCAD 工具的集成,并且对于日常使用来说速度太慢。由于半导体技术的复杂性,通过在理想条件下观察孤立器件的单个方面来评估工艺或器件结构变化对电路性能的影响变得越来越困难。相反,需要一个能够处理嵌入在芯片环境中的实际器件结构的 TCAD 工具链。TCAD 的所有方面都需要新的方法,以确保基于灵活的模拟模型的高效工具链,从原子效应到电路行为,这些模型可以处理新材料、器件原理和随之而来的大规模模拟。IEEE 电子设备学报的这期特刊将介绍 TCAD 在工艺和器件行为领域的最新发展和最新技术,重点介绍改进工具链的新方法。论文必须是新的、原创的材料,且未受版权保护、未在任何其他档案出版物中出版或接受出版,目前尚未考虑在其他地方出版,并且在《电子设备交易》审议期间不会提交到其他地方。感兴趣的主题包括但不限于:
这项研究介绍了芒果(多阶段能量优化),这是一种新型优化模型,结合了多年计划范围,以及灵活的多阶段投资策略,用于有效的,长期的分散多能系统(D-MES)的长期长期设计。通过考虑随着时间的流逝而发展的能源和技术 - 经济环境的动态,芒果利用投资灵活性的战略价值,并可以最佳地D-MES投资,以便从预计的未来降低的技术成本和技术改进中受益。为了实现这一目标,该模型考虑了最相关的动态方面,例如能源需求的年度差异,不断变化的能源运营商和技术价格,技术改进和设备退化。芒果还能够优化由安装在不同位置的多个相互连接的D-ME组成的复杂配置的设计。最后,该模型的公式还解决了可能在多阶段能量系统模型中扭曲解决方案的原子效应。除了介绍芒果的关键方面和数学表述外,本研究还使用该模型制定了一个30年的项目地平线,该计划是由瑞士苏黎世3个地点组成的城市地区。一个候选D-ME被考虑每个站点,并检查了有关建筑改造和D-MES互连的不同情况。总体结果表明,改造会导致排放水平较低,但成本明显更高。另一方面,D-MES互连可改善经济和环境系统的性能。最后,关于最佳的D-MES配置,使用了多种技术,并结合了空气源热泵和天然气锅炉的组合,从而提供了更好的经济性能以及地面源热泵和生物量锅炉的组合,以实现更环保的设计。总的来说,芒果通过在每个项目年内提供有关系统经济业绩的详细信息,通过提供有关系统的经济性能,并在技术层面上指定每个D-MES的最佳技术配置及其最佳操作时间表,从而在经济层面上提供灵活的多阶段投资策略来促进D-MES决策。具有长期的视角,芒果可以提供与能源开发人员领导的现实世界能量系统设计项目的动态类别相匹配的见解。