我们在量子和非线性光学以及多体物理学方面的理论项目是对冷原子气体和固态物理学大型实验项目的补充。激光/原子相互作用的主要实验兴趣包括冷原子在量子计算和量子模拟中的应用(通过原子干涉和原子钟)以及热原子的新型传感模式。此外,我们最近还启动了固态量子纳米科学研究和用于量子计算的硅技术的新项目。与此同时,我们正在推进光子学研究所的许多基础光子学技术,该研究所与弗劳恩霍夫应用光子学中心共置。进一步的战略伙伴关系包括与国家和地方工业以及国家物理实验室的紧密联系。
相干量子现象的利用代表着计量学领域的一个新领域,该领域的研究旨在实现对物理现象的越来越精确的测量。量子计量学实验的原型可能是原子钟中使用的简单的拉姆齐干涉测量法,几十年来,它一直是时间和频率标准校准的基础。然而,现代量子计量学实验通常需要对几个量子自由度进行复杂的操纵才能获得单一的测量结果。例如,考虑量子逻辑光谱时钟测量,其中使用原子的量子力学运动作为总线,将一个原子的内部时钟跃迁状态转移到辅助原子中可检测的跃迁[1]。对 N 个不相关粒子集合进行测量的自然精度极限是标准量子极限,其中测量精度与 ∼ 1 / √ 成比例
相干量子现象的利用代表着计量学领域的一个新领域,该领域的研究旨在实现对物理现象的越来越精确的测量。量子计量学实验的原型可能是原子钟中使用的简单的拉姆齐干涉测量法,几十年来,它一直是时间和频率标准校准的基础。然而,现代量子计量学实验通常需要对几个量子自由度进行复杂的操纵才能获得单一的测量结果。例如,考虑量子逻辑光谱时钟测量,其中使用原子的量子力学运动作为总线,将一个原子的内部时钟跃迁状态转移到辅助原子中可检测的跃迁[1]。对 N 个不相关粒子集合进行测量的自然精度极限是标准量子极限,其中测量精度与 ∼ 1 / √ 成比例
进行了地球元素。➢用于量子计算机,光学晶格时钟,天体物理学和等离子体诊断。➢相对论杂乱,处理问题和昂贵的工具等问题。➢前景,例如量子技术,更好的原子钟和新材料。摘要:这种新方法预测了原子数的碱性地球元素的激发状态,从4(Beryllium,be)到88(Radium,ra),这是基于碱接地元素的第二个科学和技术领域。它们具有简单的电子结构(NS²),其特定的激发特征在广泛的领域中找到了应用,从光谱和量子计算到精确定时管理和血浆诊断。在过去的几十年中,理论和实验研究付出了很多努力,以研究和理解其激动的状态。计算机化的变化,例如使用许多人体扰动理论,密度功能理论(DFT)和其他相对论校正,已经显着改善了激发态的转变概率,寿命和振荡者强度的预测。其他计算方法(例如配置相互作用(CI)和耦合簇(CC)理论)提供了有关电子相关性和精细结构分裂的更多信息,以提供更大的碱性地球元素,例如钡和radium和radium。本评论论文重点介绍了碱金属激发状态的最新进步,当前趋势和新技术。应用高分辨率光谱法(如激光诱导的荧光(LIF)光电离和两光子效率)的应用,但是可以更好地确定能级,衰减速率和自动离电现象。超快速激光器和可调激光系统的进步有助于实时评估过渡激发现象。利用现代技术,例如激光冷却和捕获,可以对激发状态进行显着操纵,从而在量子信息技术和原子钟中显着进步。激发态在碱 - 地球物种中的应用是多种多样的。基于光原子时钟基于光原子时钟的过渡已开发出来,以确定一天中的新标准,以无法实现的准确性,从而质疑国际单位系统(SI)中第二个的定义。这些量子计算元素的亚稳态状态被视为Qubits,其量子特性被用来维持延长的相干时间并促进更容易的控制。此外
光学频率梳是精密计量实验必不可少的工具,其应用范围从痕量气体的远程光谱传感到光学原子钟的表征和比较,以实现精密计时,以及探索标准模型以外的物理现象。本文介绍了基于自由空间激光器和 Er/Yb 共掺杂玻璃增益介质的电信波段自锁模频率梳的架构和完整特性。该激光器为基于 Er:光纤激光器的频率梳提供了一种强大且经济高效的替代方案,同时提供与 Ti:蓝宝石激光系统类似的稳定性和噪声性能。最后,使用两个超稳定的 1157 nm 和 1070 nm 光学参考进行高稳定性频率合成,并通过将这些参考划分到微波域来产生低噪声光子微波,证明了 Er/Yb:玻璃频率梳的实用性。
根据相对论,理想时钟的读数被解释为沿着它在时空中的经典轨迹所经过的固有时。相反,量子理论允许将许多同时的轨迹与一个量子钟关联起来,每个轨迹都有适当的权重。在这里,我们研究叠加原理如何影响简单时钟(一个衰减的两能级原子)观察到的引力时间膨胀。将这样的原子置于位置叠加中使我们能够分析量子贡献对自发辐射中经典时间膨胀的表现。特别地,我们表明,在引力场中分离波包的相干叠加中制备的原子的发射率不同于这些波包的经典混合中原子的发射率,这引起了量子引力时间膨胀效应。我们证明了这种非经典效应也表现为原子内部能量的分数频率偏移,该偏移在当前原子钟的分辨率范围内。此外,我们还展示了空间相干性对原子发射光谱的影响。
光学时钟需要更稳定的光学振荡器来加速 SI 秒的重新定义,为计量学带来出色的基础科学,并为基于时钟的大地测量学中的创新传感器提供应用。该项目的总体目标是实现利用量子技术的新一代超稳定光学振荡器。这意味着从量子光学和量子计算到光频率计量领域的理论和实验量子操控知识转移。虽然通过多粒子和光物质相互作用在原子钟和传感器中应用量子测量策略尚处于原理验证阶段,但该项目将实施并进一步开发与计量相关的光学振荡器上的最先进量子测量策略。它将影响冷原子系统和光学设备的计量和传感,以及可扩展量子信息处理和模拟中使用的技术。需要
摘要 探测标准模型基本常数的变化将为我们提供新物理学的有力证据,并可能揭开暗物质和暗能量的面纱。在这项工作中,我们讨论了如何使用原子和分子钟网络在广泛的时间尺度上以前所未有的灵敏度寻找此类变化。这正是最近启动的 QSNET 项目的目标:用于测量基本常数稳定性的时钟网络。QSNET 将包括最先进的原子钟,但也将开发下一代分子和高电荷离子钟,以增强对基本常数变化的灵敏度。我们描述了 QSNET 的技术和科学目标,并评估了其预期性能。我们表明,在 QSNET 探测的参数范围内,我们要么会发现新物理学,要么会对基本对称性的违反和一系列超出标准模型的理论施加新的约束,包括暗物质和暗能量模型。
已知 229 Th 原子核具有同质异能态,其能量比基态高出约 8 eV,比典型的核激发能低几个数量级。这启发了低能核物理领域的研究,其中核跃迁率将受电子壳层影响。低能量使 229 Th 同质异能体易于进行共振激光激发。利用激光冷却的捕获钍离子或透明固体中的钍掺杂离子实现核共振,可作为非常高精度光学时钟的参考。这种核钟与传统原子钟之间的精确频率比较将提供对超出标准模型的假设新物理效应的灵敏度。虽然 229 Th 的激光激发仍然是一个尚未解决的难题,但最近的实验已经提供了有关跃迁能量和相关核特性的重要信息。
量子逻辑光谱 (QLS) 可用于缺乏合适电子能级结构来直接执行这些任务的原子和分子离子种类的内部状态制备和读出[1 – 4]。原则上,通过使用“逻辑离子”(LI) 及其与共捕获的“光谱离子”(SI) 的运动耦合,QLS 可以控制任何离子种类。如参考文献 [1] 中所述,传统 QLS 协议有两个主要局限性。首先,它要求将离子冷却到接近运动基态。其次,它的读出效率与 SI 的数量关系不大,这可能会阻碍将量子逻辑原子钟扩展到多个离子所带来的更高的稳定性[5]。已经开发出使用重复量子非破坏 (QND) 测量来减轻这些影响的方法[6 – 8]。然而,由于电子结构不合适,应用它们可能不可行,重复测量会降低光谱探针的占空比。在这里,我们演示了文献 [9] 中基于几何相位门提出的 QLS 方法