可以富集各种类型的电活性微生物,形成降低电荷转移耐药性的生物心理,从而加速电子在微生物燃料电池中具有高氧化还原电势的重金属离子。微生物作为生物大道上的生物催化剂可以减少重金属还原所需的能量,从而使生物学能够实现较低的还原性发作潜力。因此,当这种重金属取代氧气(如电子受体)时,重金属的价状态和形态在生物学的还原作用下变化,从而意识到重金属废水的高效处理。这项研究回顾了生物疗法的微生物群落的机制,主要影响因子(例如电极材料,重金属的初始浓度,pH和电极电位的初始浓度),并讨论了生物降压物中的电分布以及微生物电极和重金属(电子受体(电子受体)之间的竞争)。生物心降低重金属还原中的电化学过电势,从而允许使用更多的电子。我们的研究将提高对生物座电子传输机制的科学理解,并为使用生物座净化重金属废水提供理论支持。
摘要:在这里,我们报告了使用碱金属铝制凝胶膜的无氢,拓扑氧除外的技术的发展(a x alga,其中a = li,na,k)。这些汞合金提供了一个独特的可调系统,其中选择碱金属,其浓度和Al:GA组成改变了其还原性能。我们证明了这种方法在拓扑上从Lnnio 3(ln = la,nd)的大量和薄膜标本中去除氧的实用性,以形成镍lnnio 2(ln = la,nd)的无限层。例如,Na 0.25藻类在300°C下从LANIO 3提供120小时的散装lanio 2,而在265°C下,相同的汞合金持续48小时,可提供中级LA 2 Ni 2 O 5(LANIO 2.5)。时间和温度的其他变化以及碱金属(a)的选择及其在X藻类中的浓度(x),可以进一步探索拓扑还原性。与基于氢气或氢化物(例如Lih,nAh和cah 2)的标准技术相比,这些汞合金提供了降低潜力的优雅可调性,从而可以控制去除氧气的速率和程度,而无需氢插入的风险。■简介
该通知的主题是乳酸 - n- neotetraose(lnnt),用于在广泛水解的基于氨基酸和氨基酸的豁免婴儿配方中,适用于患有CMPA的原性婴儿,以高达600 mg/l的级别消耗。该通知告诉我们Glycom的观点,即通过科学程序,这种使用是Glas。glycom提供了有关LNNT身份的信息,1是由D-乳糖,N-乙酰基-D-葡萄糖胺,D-乳糖糖和D-葡萄糖组成的四糖。glycom指出,LNNT是白色至白色粉末,其中含有≥92%的LNNT,其中还可能包含其他碳水化合物,包括乳糖,乳糖-N -Triose II,para -lacto -lacto -n -lacto -n -Neohehexaose和lnnt Fructose fructose asomer。lnnt(CAS登记13007-32-4)具有化学名称β-D-乳骨吡喃糖基 - (1→4)-2-乙酰氨基-2-脱氧-2-脱氧-β-d-葡萄糖吡喃糖基 - (1→3)-β-d- d- d- d- d- d- d- d- d- d- d-甲状腺乳糖基 - (1→galactopyranosyl-(1→1→4)-d-gluc。Glycom描述了LNNT的两阶段制造过程,并将有关GRN 000659的生产生物的信息纳入了通知。2第一个
摘要:海洋化合物代表具有潜在抗癌作用的新药来源。在其中,包括属于Irciniidae家族的海绵,已被证明对不同的人类癌细胞发挥细胞毒性作用。在这里,我们第一次研究了从海绵,ircinia ramosa(Porifera,dictyocer-atida和irciniidae)提取物的治疗作用(称为ISP),对A375人类黑色素瘤细胞的治疗作用。我们发现ISP损害了A375黑色素瘤细胞的增殖,通过caspase依赖性凋亡诱导细胞死亡,并在细胞周期的G1阶段诱导了细胞,如流量细胞仪和QPCR分析所证明。使用DCF-DHA和线粒体探针观察到,ISP的促凋亡效应与ROS产生和线粒体调制的增加有关。此外,我们进行了伤口愈合,侵袭和克隆生成测定,发现ISP能够限制A375迁移,侵袭和克隆原性。重要的是,我们观察到,ISP处理调节了与EMT相关的上皮标记,E-CAD和N-CAD的表达,揭示了ISP在调节A375迁移和侵袭中的作用的机制。总的来说,这项研究提供了第一个证据,以支持Ircinia ramosa Sponge提取物作为治疗人类黑色素瘤的潜在治疗资源。
➢ NSF: A BioFoundry for Extreme & Exceptional Fungi, Archaea and Bacteria (Ex-FAB) (Senior personnel, 2024 – 2030) ➢ SERDP: Screening, Design, and Optimization of Novel Biocatalysts for C-F Bond Cleavage of Per- and Polyfluoroalkyl Substances (PI, $1,058,539, 2024 – 2028, Project No.:ER23-0225)➢NSF-ECS:CAS:对生物核酸化 - 氯氟烷基物质的机械理解(PI,600,000美元,2024 - 2024 - 2027年,奖励号,奖励>:2404351)➢USEPA:可伸缩的催化和辅助技术,用于有效的氢氟碳破坏(Co-Pi,PI:Fudong Liu:Fudong Liu,UC,UC,Riverside,Riverside,2024 - 2029)➢使用PA:使用PFA与PFA相关的PFA和MITAGE-PFAS的污水处理和污水处理(Co co efflus-efflus-files in Co efflus-efflus in Co.-pie co offlus-fipi efflus offlus ofsove( pi:韦伊郑,伊利诺伊大学乌尔巴纳 - 香槟分校,2024年至2027年)➢USDA:囊泡相关的抗生素耐药性基因:对农业水重复使用抗生素抗生素抗生素细菌的命运,转移和贡献:2024-67019-42681)➢USEPA:一项多层研究,旨在建立可归因于市政废水和生物固体的地表水中AMR的风险评估框架(Co-Pi,PI:pi:xu li:xu li,内布拉斯加州大学,内布拉斯加州大学,2024 - 2027年的tracker tracser crockerterperter, “永远的化学品”的生物催化降解(Co-Pi,Pi:Chao Zhou,Geosyntec,奖励号24C0020,2024-2025)➢USDA-NIFA-AFRI:使用多层生物炭的抛光技术来缓解灌溉农业中的抗菌抗药性2023-68015-39269,2023-2027)➢SERDP:使用基于活性的基于活性的基于活性的PFA前体和PFA的生物转化速率估计,PFAS前体和PFAS序列化的生物量序列化估计估计微生物生物量(co-pi,abl)(co-pi:jacob chuy&jaley chuy&jaley&jaley&jaley&jaley&jaley&jaley, ER23-3796,2023-2025)➢SERDP:使用原位缩影评估AFFF的地下水中的多氟烷基物质转化(Co-Pi,Pi:John Xiong:John Xiong,Haley&Aldrich,Inc.在AFFF IMPACT的土壤和地下水中,有毒性的氧化过渡区。(Co-Pi,Pi:D。Wang,ER23-3620,2023-2027)➢NSF:Erase-PFAS:具有高度极化的氧化还原环境的可调真空 - 硫化物辐射系统,用于处理per和多氟烷基物质。(Co-Pi,Pi:H。Liu,奖励编号:2131745,2022-2024)➢NSF-Career:在非抗生素微量造影剂暴露下对抗生素抗性的加速出现和传播的系统理解。(PI,奖励编号:2045658,2021-2026)➢NIEHS:协同物质 - 微生物界面的更快,更深和耐耐空气的还原性去呼其相。(Lead Pi,Pi:C。Liu,奖励编号:R01ES032668,2021-2025)➢USDA-NIFA:农业环境中人为引起人为诱导的抗菌抗性的风险。(Co-Pi,Pi:Ashworth,赠款编号:2021-68015-33505,2020-2024)➢SERDP:还原性脱氟化微生物的识别,表征和应用。
摘要基于凝胶剂的药物已被重新定义为抗菌治疗候选物,并显示出对抗药性病原体的替代治疗选择的巨大潜力。凝固膜的活性(Ga 3+)是其与铁铁(Fe 3+)的化学相似性,并取代了铁依赖性途径。ga 3+在典型的生理环境中是氧化还原性的,因此使铁代谢对细菌生长至关重要。麦芽盐(GAM)是一种众所周知的凝胶水溶性配方,由中央凝胶阳离子组成,该中央凝胶配位与三个麦芽糖配体配位,[GA(Maltol -1H)3]。这项研究实施了一种无标记的定量蛋白质组学方法,以观察GAM对细菌病原体Pseudomonas铜绿菌的影响。将铁替换为镀具有模拟铁限值的反应,如与铁采集和储存相关的蛋白质的增加所示。还发现了与法定感应和蜂群运动相关的蛋白质的丰度。这些过程是细菌毒力和传播的基本组成部分,因此暗示了GAM在治疗铜绿假单胞菌感染中的潜在作用。
需要对新疫苗平台的安全性和免疫原性进行评估,以提高公众对 2019 冠状病毒病 (COVID- 19) 疫苗的接受度。在此,我们通过分析 BNT162b2 和 ChAdOx1 nCoV-19 连续两剂疫苗接种前后的血液样本,评估了健康成人接种疫苗后反应原性和免疫原性之间的关联。结果包括抗 S IgG 抗体和中和抗体反应、不良事件和促炎性细胞因子反应。共招募了 59 名和 57 名分别接种了 BNT162b2 和 ChAdOx1 nCoV-19 疫苗的参与者。第一剂 ChAdOx1 nCoV-19 疫苗接种后的全身不良事件比第二剂疫苗接种后更常见。在 BNT162b2 接种者中观察到了相反的趋势。尽管第一剂 ChAdOx1 nCoV-19 显著提高了促炎性细胞因子的中位水平,但第二剂并没有,任何一剂 BNT162b2 也没有。ChAdOx1 nCoV-19 接受者的全身不良事件等级与 IL-6 和 IL-1b 水平显着相关。第二剂 BNT162b2 产生的抗 S IgG 和中和抗体滴度与发烧显着相关。总之,第一剂 ChAdOx1 nCoV-19 引起的全身不良事件可能与以下因素有关:
近年来,研究界的高理论能力(3860 mA H G 1),其低氧化还原电位为3.04 V. 3,4,锂金属在基于锂金属的电池(LMB)的阳极材料(例如锂 - air – air(li – air)和lithium – lithium-sulfur(lithium)和lith-ssul(lithium – ssulfur(lithium – ssul),锂金属起着必不可少的作用。5,6尽管有前途的方面,但由于骑自行车期间锂的可逆性差而导致Li Metal作为阳极的实施引起了许多挑战。,李树突的寄生生长可能导致安全问题和腐蚀,从而导致性能丧失。7 li金属阳极也遭受无限体积波动和不稳定的固体电解质相(SEI)的形成。关于无限的体积变化,阳极承受着巨大的内部压力,促使Li Dendrites从阳极中脱离并致力于“ Dead Li Li”。3此外,LI的高度还原性使电解质在阳极表面上分解形成不稳定且脆弱的SEI,该SEI易受树突和体积波动的综合作用而崩溃。8因此,已经考虑了巨大的努力来实现Li金属作为阳极的实际使用,包括(i)用原位或原位衍生的SEI层保护Li Metal,9-11(ii)实施固态电解质(SSES),12,13
肌肉干细胞(MUSC)在骨骼肌再生中起着至关重要的作用,居住在整个再生过程中经历尺寸和机械变化的利基市场中。这项研究调查了MUSC在再生的后期遇到的三维(3D)限制和刚度如何调节其功能,包括干,激活,增殖和分化。我们设计了一个不对称的3D水凝胶双层平台,具有可调的物理限制,以模仿再生的MUSC利基市场。我们的结果表明,增加的3D限制能够保持PAX7表达,减少MUSC激活和增殖,抑制分化,并与较小的核大小和H4K16AC水平降低相关,这表明机械限制调节了核结构和表观遗传调节。与在更狭窄的3D条件下的二维(2D)环境中,无限制的二维(2D)环境中的MUSC表现出更大的核和更高的H4K16AC表达,从而导致逐步激活,扩张和肌源性承诺。这项研究强调了3D机械提示在MUSC命运调节中的重要性,3D限制是对肌原性承诺的机械制动器,为控制肌肉再生过程中MUSC行为的机械性景观机制提供了新的见解。
巨噬细胞中线粒体生物能的受损可能会驱动高炎性细胞因子反应1-6,但是是否也可能是由遗传的mtDNA突变引起的。在这里,我们使用一种多摩变方法来解决这个问题,该方法将超分辨率成像和代谢分析整合到来自丙氨酸7的线粒体trNA中异质质突变(M.5019a> g)的线粒体疾病的小鼠模型中的巨噬细胞。这些M.5019a> G巨噬细胞在呼吸链复合物中表现出缺陷,并且由于中骨内部翻译减少而导致氧化磷酸化(OXPHOS)。以适应这种代谢应激,线粒体融合,还原性谷氨酰胺代谢和有氧糖酵解均增加。在炎症激活后,I型干扰素(IFN-I)释放得到增强,而在M.5019a> G巨噬细胞中限制了促炎性细胞因子和黄磷脂的产生。最后,使用M.5019a> G小鼠的体内内毒素性模型显示IFN-I水平和疾病行为升高。总而言之,我们的研究确定了响应致病性mtDNA突变的先天免疫信号传导的意外失衡,对MTDNA疾病患者的病理发展具有重要意义。8。
